GENETIC DIVERSITY AMONG POPULATIONS OF THE TAMARIX SPECIES USING CDDP MOLECULAR MARKER

Document Type : Research Paper

Authors

1 Rangeland Sciences, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

3 Faculty of Natural Resources, University of Tehran, Tehran, Iran

4 Faculty of Natural Resources, University of Tehran, Tehran, Iran.

5 Department of Rangeland Management, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abstract

Tamarix L. is a problematic genus in taxonomy of Tamaricaceae due to the uncertainty of species number, distribution, and ecological conditions in Iran. In this study, we investigated the genetic diversity and taxonomic relationships of 34 individuals from 8 populations including 3 species of Tamarix in Isfahan province, Iran. Ten primers using CDDP molecular marker were used to survey the genetic diversity of the genus. One hundred and twenty-five bands were created from ten primers, of which 102 (80.16%) were polymorphic. Cluster analysis classified individuals into three distinct groups. High gene flow among Tamarix species using PCoA analysis showed high variability among the three Tamarix species, so that samples from different species were grouped together. Molecular analysis of variance showed that intra-population genetic diversity (90%) was greater than inter-population genetic diversity (10%). The highest mean Neiʼs genetic diversity (H) and Shannon diversity index (I) was observed in the Habib Abad population. Data analysis showed that morphological traits and DNA sequencing data in the genus Tamarix were not fully correlated, which could be justified by the large number of hybrids between species and the lack of genetic differentiation between the studied species.

Keywords


Article Title [Persian]

تنوع ژنتیکی در میان جوامع گونه‌های گز با استفاده از نشانگر مولکولی CDDP

Authors [Persian]

  • محمدعلی قوام‌پور 1
  • سیدعباس میرجلیلی 2
  • محمد جعفری 3
  • حسین آذرنیوند 4
  • سید اکبر جوادی 5
1 دانشجوی دکتری علوم مرتع، دانشکده منابع طبیعی و محیط زیست، شاخه علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 مرکز آموزش عالی امام خمینی
3 دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران
4 دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران
5 گروه علوم مرتع، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
Abstract [Persian]

سرده Tamarix به دلیل عدم قطعیت تعداد گونه‌ها، پراکنش و اهمیت اکولوژیکی در ایران، یکی از مهم‌ترین موضوعات در رده‌بندی تیره گز است. در این مطالعه، تنوع ژنتیکی و روابط خانوادگی 34 فرد از 8 جمعیت از 3 گونه Tamarix در استان اصفهان مورد بررسی قرار گرفت. ده آغازگر از نشانگر مولکولی CDDP برای بررسی تنوع ژنتیکی این سرده استفاده شد. 125 باند از ده آغازگر ایجاد شد، که از این تعداد 102 (16/80 درصد) چند شکلی بودند. آنالیز خوشه‌ای جمعیت‌ها را به سه گروه مجزا دسته‌بندی کرد. جریان بالای ژنی در میان گونه‌های Tamarix با استفاده از تجزیه و تحلیل PCoA  تنوع زیادی در بین سه گونه Tamarix نشان داد، به طوری که نمونه‌های گونه‌های مختلف با هم گروه‌بندی شدند. تجزیه واریانس مولکولی نشان داد که تنوع ژنتیکی بین جمعیت (90٪) بیشتر از تنوع ژنتیکی درون جمعیت (10٪) است. بالاترین میانگین تنوع ژنتیکی نای (H) و شاخص تنوع شانون (I) در جمعیت حبیب‌آباد مشاهده شد. تجزیه و تحلیل داده‌ها نشان داد که صفات ریخت‌شناختی و داده‌های توالی DNA  در سرده Tamarix  کاملاً با هم ارتباط ندارند، که می‌تواند با وجود تعداد زیاد دورگه‌ بین گونه‌ها و عدم تمایز ژنتیکی بین گونه‌های مورد مطالعه توجیه شود.

Keywords [Persian]

  • Tamaricaceae
  • genetic diversity
  • CDDP marker
  • hybridization
  • Iran
2014: Influence of the cooking conditions on the properties of pulp and paper sheets from Athel wood (Tamarix aphylla L,) obtained by the soda-AQ method. Journal of Food Agriculture & Environment 12 (2): 1336-1341.
Arianmanesh, R., Mehregan, I., Assadi, M. & Nejadsattari, T. 2016: Comparative morphology of the genus Tamarix (Tamaricaceae) in Iran. -International Letters of Natural Sciences 60: 1-12.
Assadi, M., 1989: Tamaricaceae in Assadi, M. & al. (eds.) Flora of Iran vol. 1. Research Institute of Forests & Rangelands, Tehran.
Bi, IV., Harvengt, L., Chandelier, A., Mergeai, G. & Du Jardin, P. 1996: Improved RAPD amplification of recalcitrant plant DNA by the use of activated charcoal during DNA extraction. Plant Breeding 115 (3): 205-206.
Botstein, D., White, RL., Skolnick, M. & Davis, R.W. 1980: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics 32 (3): 314.
Brotherson, JD. & Winkel, V. 1986: Habitat relationships of salt cedar (Tamarix ramosissima) in central Utah. The Great Basin Naturalist 535-541.
Baum, B.R. 1978: The genus Tamarix Israel Academy of Sciences and Humanities. Jerusalem. xii, 209.
Collard, B. & Mackill, D. 2009: Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter 27 (4): 558.
DeLoach, CJ., Carruthers, RI., Dudley, TL., Eberts, D., Kazmer, DJ., Knutson, AE., Bean, DW., Knight, J., Lewis, PA. & Milbrath, LR. 2004: First results for control of saltcedar (Tamarix spp,) in the open field in the western United States. XI International Symposium on Biological Control of Weeds 505 p.
Gaskin, JF. & Kazmer, DJ. 2009: Introgression between invasive salt cedars (Tamarix chinensis and T. ramosissima) in the USA. Biological Invasions 11 (5): 1121-1130.
Gaskin, JF. & Schaal, BA. 2003: Molecular phylogenetic investigation of US invasive Tamarix. Systematic Botany 28 (1): 86-96.
Gaskin, JF. & Shafroth, PB. 2005: Hybridization of Tamarix ramosissima and T. chinensis (saltcedars) with T. aphylla (athel) (Tamaricaceae) in the southwestern USA determined from DNA sequence data. Madrono 52 (1): 1-11.
Guo, J., Yu, X., Yin, H., Liu, G., Li, A., Wang, H. & Kong, L. 2016: Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Systematics and Evolution 302 (9): 1301-1309.
Hajibarat, Z., Saidi, A., Hajibarat, Z. & Talebi, R. 2015: Characterization of genetic diversity in chickpea using SSR markers start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiology and molecular biology of plants 21 (3): 365-373.
Hedrick, P. 2011: Genetics of populations. Jones & Bartlett Learning.
Ijbari, H., Sheidai, M., Mehrabian, AR., Noormohammadi, Z. & Ghasemzadeh-Baraki, S. 2014: K-means clustering and structure analyses of genetic diversity in Tamarixsp, accessions. Turkish Journal of Botany 38 (6): 1080-1094.
Jiang, L. & Zang, D. 2018: Analysis of genetic relationships in Rosarugosa using conserved DNA-derived polymorphism markers. Biotechnology & Biotechnological Equipment 32 (1): 88-94.
Liu, K. & Muse, S.V. 2005: PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21 (9): 2128-2129.
Milbourne, D., Meyer, R., Bradshaw, JE., Baird, E., Bonar, N., Provan, J., Powell, W. & Waugh, R. 1997: Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular breeding 3 (2): 127-136.
Peakall, RO. & Smouse, PE. 2006: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6 (1): 288-295.
Poczai, P., Varga, I., Bell, N. & Hyvonen, J. 2011: Genetic diversity assessment of bittersweet (Solanum dulcamara, Solanaceae) germplasm using conserved DNA‐derived polymorphism and intron‐targeting markers. Annals of Applied Biology 159 (1): 141-153.
Reschinger. KH, 1970: Flora Iranica vol. 4, Akademische, Druck. Verlagsanstalt, Graz, Austria.
Rohlf, F. J. 1996. NTSYS-pc for Windows. Numerical taxonomy system. Version 2.0. Exeter Software, 47 Route 25A, Suite 2, Setauket, New York 11733-12870, U.S.A.
S̲ābeti, H. A. 1976: Forests, trees, and shrubs of Iran. Yazd University publishing, 735 p.
Saidi, A., Daneshvar, Z. & Hajibarat, Z. 2018: Comparison of Genetic Variation of Anthurium (Anthurium andraeanum) Cultivars Using SCoT CDDP and RAPD Markers. Plant Tissue Culture and Biotechnology 28 (2_: 171-182.
Salehi, S.P., Vendramin, G.G. & Calagari, M. 2010: Temporal genetic structure of Iranian populations of beech, Fagus orientalis (Fagaceae). Iranian Journal of Botany: 16 (1): 1-9.
Santhosh, W., Shobha, D. & Melwyn, G. 2009: Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers. Scientia Horticulturae 120 (3): 411-417.
Spooner, D. 2005: Molecular markers for genebank management, Bioversity International, IPGRI technical bulletin No: 10.
Stevens, LE. 1985: Invertebrate herbivore community dynamics on Tamarix chinensis Loueiro and Salix exigua Nuttall in the Grand Canyon Arizona Northern Arizona University.
Sun, L., Yang, R., Zhang, B., Zhang, G., Wu, X., Zhang, W., Zhang, B., Chen, T. & Liu, G. 2016: Phylogenetic relationships among species of
Tamarix
(Tamaricaceae) in China. Biochemical Systematics and Ecology 69: 213-221.
Terzoli, S., Abbruzzese, G., Beritognolo, I., Sabatti, M., Valentini, R. & Kuzminsky, E. 2014: Genetic characterization of a Tamarix spp, germplasm collection in Italy. Botany 92 (5): 360-369.
Villar, JL., Turland, NJ., Juan, A., Gaskin, JF., ALONSO, Á. & Crespo, MB. 2015: Tamarix minoa (Tamaricaceae) a new species from the Island of Crete (Greece) based on morphological and plastid molecular sequence data. Willdenowia: 161-172.
Wang, X., Fan, H., Li, Y., Sun, X., Sun, X., Wang, W. & Zheng, C. 2014: Analysis of genetic relationships in tree peony of different colors using conserved DNA-derived polymorphism markers. Scientia Horticulture 175: 68-73.