TEMPORAL GENETIC STRUCTURE OF IRANIAN POPULATIONS OF BEECH, FAGUS ORIENTALIS (FAGACEAE)

Document Type : Research Paper

Authors

1 Research Institute of Forests and Rangelands, P. O. Box 13185-116, Tehran, Iran

2 Institute of Plant Genetic, CNR, Via Madonna del Piano, I-50019 Sesto Fiorentino, Firenze, Italy

Abstract

Reforestation with autochthonous species should take into account the preservation of the temporal variability and the geographic structure of genetic diversity in forest species. In order to provide empirical data about the suitability of methods of sampling material, genetic comparison of 10 beech populations (at least 40 trees per population) and their progenies (seeds of 10 mother trees per population, each tree 7 seeds) were analysed using four highly polymorphic microsatellite loci. The allelic multiplicity was higher in seed samples than adult trees indicating gene flow from adjacent plant populations. The comparison for genetic diversity measures between adult trees and seed generation revealed no significant differences for allelic richness (Na), effective number of alleles (Ne), and number of rare alleles (Nr), neither observed (Ho) nor expected heterozygosity (He). Genetic differentiation in allelic frequencies between adult trees and seeds generation were rather low (Fst = 0.058). A close genetic relationship between adult trees from seed generation of each population, which revealed by un-weighted pair group method based on arithmetic average (UPGMA) and supported by an analysis of molecular variance (AMOVA), were detected.  In this paper some aspects related to seed sampling were discussed.

Keywords


Article Title [Persian]

ساختار ژنتیکی زمانی جمعیت‌هایی از گونه راش (Fagus orientalis) در ایران

Authors [Persian]

  • پروین صالحی شانجانی 1
  • جووانی جوزپه وندرامین 2
  • محسن کلاگری 1
1 استادیار پژوهش،مؤسسه تحقیقات جنگلها و مراتع کشور
2 استاد، مؤسسه تحقیقات ژنتیک گیاهی، CNR ، فلورانس، ایتالیا
Abstract [Persian]

در جنگاکاری با گونه های بومی می بایست حفاظت از گوناگونی زمانی و ساختار جغرافیایی تنوع ژنتیکی گونه‌های جنگلی در نظر گرفته شود. برای تهیه اطلاعات کاربردی در مورد کارآمدی روشهای جمع‌آوری نمونه، ترکیب ژنتیکی ده جمعیت راش (حداقل 40 درخت در هر جمعیت) و نتاج آنها (بذور 10 درخت مادری در هر جمعیت، به میزان 7 بذر از هر درخت) توسط چهار لوکوس میکروساتلایتی پلی‌مورف بررسی شد. تکثّر آللی در نمونه‌های بذر بیش از درختان بالغ بود که حاکی از وجود جریان ژن از جمعیتهای گیاهی مجاور است. مقایسه مقادیر تنوع ژنتیکی بین درختان بالغ و نسل بذری هیچ اختلافی را از نظر غنای آللی (Na)، تعداد موثر آللها (Ne)، تعداد آللهای نادر (Nr)، هتروزیگوزیتی مشاهده شده (Ho) و هتروزیگوزیتی مورد انتظار (He) نشان ندادند. تمایز ژنتیکی در فراوانی آللی بین درختان بالغ و نسل بذور نیز بسیار کم بود (Fst = 058/0). روابط ژنتیکی نزدیکی بین درختان بالغ و نسل بذری در هر جمعیت وجود داشت که بوسیله روش معدل گروهی (UPGMA) نشان داده شد و آنالیز واریانس ملکولی (AMOVA) نیز آن را تأیید نمود. در این پژوهش برخی ویژگیهای جمع‌آوری بذر مورد بحث قرار گرفت.

Keywords [Persian]

  • Fagus orientalis
  • Hyrcanian forests
  • Genetic diversity
  • microsatellite
  • Gene flow
  • Iran
Amaral, W., Yanchuk, A. & Kjaer, E. 2004: Methodologies for ex situ conservation. Forest Genetic Resources Conservation and Management: in plantation and genebank, volme 3, chapter 2. -IPGRI. 120 pp.
Brown, A. H. D. 1978: Enzyme, plant population genetic structure and genetic conservation. -Theor. Appl. Genet. 52: 145–157.
Buiteveld, J., Vendramin, G. G., Leonardi, S., Kamer, K. & Geburek, T.d 2007: Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. -For. Ecol. Manag., 247: 98-106.
Excoffier, L. Smouse, P. & Quattro, J. 1992: Analysis of molecular variance infered from metric distance among DNA restriction data. -Genetics, 131: 471-491.
Finkeldey, R. 1993: Die Bedeutung allelischer Profile für die Konservierung genetischer Ressourcen bei Waldbäumen. -Göttingen Research Notes in Forest Genetics No. 14, German with summary, 1–176.
Gower, J.-C. 1966: Some distance properties of latent root and vector methods used in multivariate analysis. -Biometrika, 53: 325-338.
Gregorius, H.-R. 1994: Strategies for conserving genetic diversity in the face of global change. In: Temperate Ecosystems and Global Change. Edited by Boyle, T.J.B. & Boyle, C.E.B. -Springer-Verlag, Berlin, Heidelberg. pp. 157–182.
Hamrick, J.-L., Godt, M.-J.-W. & Sherman-Broyles, S.-L. 1992: Factors influencing levels of genetic diversity in woody plant species. -New Forests, 6: 95-124.
Hamrick, J.-L. & Godt, M.-J.-W. 1989: Allozyme diversity in plant species. In: Plant Population Genetics, Breeding and Genetic Resources. Edited by Brown, A.H.D., Clegg, M.T., Kahler, A.L. & Weir, B.S. Sinauer Associates, Inc. -Sunderland, Massachusetts. Pp. 43–63.
Hattemer, H. H. & Ziehe, M. 1997: Genetic control of phenotypic traits with relevance to gene conservation in trees– a survey of methods. In: Perspectives of Forest Genetics and Tree Breeding in a Changing World. Edited by MÁTYÁS, Cs.
IUFRO World Series Vol. 6., -Sopron, pp. 135–148.
Hattemer, H. H., Starke, R. & Ziehe, M. 1993: Changes of genetic structures in beech populations. In: The Scientific Basis for the Evaluation of the Genetic Resources of Beech. Edited by  Muhs, H.-J. & G. VON Wühlisch. -Comm. Europ. Communities, Working Doc. F.II.3 -SJ/0009 pp. 233–248.
Hattemer, H. H. 1987: Are the EEC Directives on forest reproductive material genetically adequate? -Silvae Genet. 36: 94–102.
Janssen, A. 2000: Untersuchungen zur genetischen Variation der Buche in Hessen. Der Einfluss von Ernteverfahren auf die genetische Struktur von Saatgut eines Buchenbestandes. Forstwiss. -Dissertation, Universität Göttingen. (zugleich: Hessische Landesanst. für Forsteinrichtung, Waldforschung und Waldökologie, Forschungsberichte, Band 27: 1–142.
Levin, D. A. & Kerster, H. W. 1974:  Gene flow in seed plants. -Ecol. Bio. 7: 139–200.
Levy, F. & Neal, C. L. 1999: Spatial and temporal genetic structure in chloroplast and allozyme markers in Phacelia dubia implicate genetic drift. -Heredity 82: 422–431.
Mantel, N. 1967: The detection of disease clustering and a generalized regression approach. -Cancer Rese., 27: 209–220.
Müller-Starck, G. & Ziehe, M. 1991: Genetic variation in populations of Fagus sylvatica L., Quercus robur L. and Q. petraea Liebl. in Germany. In: Genetic Variation in European Populations of Forest Trees. Edited by Müller-Starck, G. & Ziehe, M. Frankfurt am Main. J. D. -Sauerländer’s Verlag, pp. 125–140.
Müller-Starck, R. 1996: Genetische Aspekte der Reproduktion der Buche (Fagus sylvatica L.) unter Berücksichtigung waldbaulicher Gegebenheiten. Ber. Forschungszentrum Waldökosysteme, Reihe A, Bd. 135. Göttingen.
Nei, M. 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. -Genetics, 89: 583-590.
Pastorelli R., Smulders M. J. M., Van’t Westende W. P. C., Vosman B., Giannini R., Vettori C. & Vendramin G. G. 2003: Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. -Mol. Ecol. Notes, 3: 76–78.
Peakal, R., & Smouse, P. E. 2006: GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. -Mol. Ecol. Notes, 6:288–295.
Salehi Shanjani, P., Paule, L., Khavari-Nejad, R. A., Gömöry, D. & Sagheb-Talebi, K. 2002; Allozymic variability in beech (Fagus orientalis Lipsky) forests over Hyrcanian zone. -For. Genet., 9(4): 297-297.
Salehi Shanjani, P., Vendramin, G. G. & Calagari, M. 2008: Assessment of genetic structure within and among Iranian populations of beech (Fagus orientalis Lipsky): Implications for in situ gene conservation. -The 8th IUFRO International Beech Symposium, Japon.
Salehi Shanjani, P., Vettori, C., Giannini, R. & Khavari-nejad, R. A. 2004: Intraspecific variation and geographic patterns of Fagus orientalis Lipsky chloroplast DNA.  -Silvae Genet., 53:193-197.
Schneider, S., Roessli, D. & Excoffier, L. 2000: Arlequin, Version 2000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva.
Sneath, P. H.A. & Sokal, R. R. 1973: Numerical taxonomy - the principles and practice of numerical classification. -W. H. Freeman: San Francisco.
Starke, R. & Müller-Starck, G. 1992: Genetische Untersuchungen über die Reproduktion in zwei Beständen der Buche (Fagus sylvatica L.). In: Biochemische Untersuchungen zur Genetik von Waldbaumpopulationen. -Schriftenr. d. Landesanst. f. Forstwirtschaft Nordrhein-Westfalen, pp. 57–67.
Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. -Mol. Biol. Evol., 24:1596–1599.
Wang, K. S. 2003:  Genetic Diversity and Temporal Genetic Structure in European Beech (Fagus sylvatica L.). -Silvae Genet., 52 (3-4): 100-106.
Wang, K. S. 2004: Gene flow in European beech (Fagus Sylvatica L.). -Genetica, 122: 105-113.
Ziehe, M., Gregorius, H. R., Glock, H., Hattemer, H. H. & Herzog, S. 1989: Gene resources and gene conservation in forest trees: General concepts. In: F., Scholz, H.R. Gregorius, & D., Rudin (Eds). Genetic Effects of Air Populations in Forest Tree Populations. -Springer-Verlag Heidelberg, New York, Tokyo, pp. 173-186.
Ziehe, M., Hattemer, H. H., Müller-Starck, R. & Müller-Starck, G. 1999: Genetic structures as indicators for adaptation and adaptational potentials. In: Forest Genetics and Sustainability. Edited by Mátyás, Cs. -Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–89.