Abolmaali, S., Torkesh Esfahani, M. & Boshri, H. 2017: Assessing impacts of climate change on endangered Kelossia odoratissima Mozaff species distribution using Generalized Additive Model. -JNE 70(2): 243-254. https://doi.org 10.22059/jne.2017.63853
Afuye, G.A., Kalumba, A.M. & Orimoloye, I.R. 2021: Characterisation of Vegetation Response to Climate Change: A Review. -Sustainability 13: 7265. https://doi.org/10.3390/su13137265
Ahmadi, M., Hemami, M.R., Kaboli, M. & Shabani, F. 2023: MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. -Ecol. Evol. 13(2): e9827.
https://doi.org/10.1002/ece3.9827
Aryal, P., 2015: Climate change and its impact on medicinal and aromatic plants: a review. -Climate change 1(1): 49-53.
Babaei, F., Ebrahimi, A., Naghipour, A.A. & Haidarian, M. 2022: Potential geographic distribution of Prangos ferulacea (L.) Lindl. in Chaharmahal va Bakhtiari province under climate change scenarios. -JPEC 10(20): 207-224.
Breshears, D.D., Huxman, T.E., Adams, H.D., Zou, C.B. & Davison, J.E. 2008: Vegetation synchronously leans upslope as climate warms. -PNAS 105(33): 11591-11592.
https://doi.org/10. 1073/pnas.0806579105
Browning, D.M., Archer, S.R., Asner, G.P., McClaran, M.P., & Wessman, C.A. 2008: Woody plants in grasslands: Postencroachment stand dynamics. -Ecological Applications, 18, 928-944. https://doi.org/10.1890/07-1559.1
Cavaliere, C., 2009: The effects of climate change on medicinal and aromatic plants. -HerbalGram 81:44-57.
Comole, A., Malan, P.W., & Tiawoun, M.A.P. 2021: Effects of Prosopis velutina invasion on soil characteristics along the riverine system of the Molopo River in North-West province. -South Africa.
https://doi.org/10.1155/2021/6681577
Darabi, M., Mostafavi, H., Rahimi, R. Teimori, A. & Farshchi, P. 2024: Conservation value of rivers under climate change: a case study from Fars Province, Iran. -Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-024-06168-5
El Gendy, A. N.G., Fouad, R., Omer, E.A., & Cock, I.E. 2023: Effects of Climate Change on Medicinal Plants and Their Active Constituents. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives (pp. 125-156). -Cham: Springer International Publishing.
Elith, J., H. Graham, C., R. Anderson, P., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC Overton, J., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Sobero, N.J., Williams, S., Wisz, M.S. & Zimmermann, N.E. 2006: Novel methods improve prediction of species’ distributions from occurrence data. -Ecography 29(2):129-151.
https://doi.org/10.1111/j.2006.0906-7590.04596.x
Feng, Y., Ma, K. M., Zhang, Y. X., et al. 2011: Effects of slope position on species abundance distribution of Quercus wutaishanica community in Dongling Mountain of Beijing. -Chinese Journal of Ecology 30(10): 2137-2144. (in Chinese)
Freeman, B.G., Scholer, M.N., Ruiz-Gutierrez, V. & Fitzpatrick, J.W. 2018: Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. -PNAS 115(47): 11982-11987.
https://doi.org/10.1073/pnas.1804224115
Ghasemi Pirbalouti, A., Malekpoor, F. & Hamedi, B. 2012: Ethnobotany and antimicrobial activity of medicinal plants of Bakhtiari Zagross mountains, Iran. -J. Med. Plant Res. 6(5): 675-679.
https://doi.org/10.5897/JMPR11.930
Ghehsareh Ardestani, E. & Heidari Ghahfarrokhi, Z. 2021: Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains, Iran. -GECCO 26: e01488.
https://doi.org/10.1016/j.gecco.2021.e01488
Grimm, N.B., Chapin III, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., Melton, F., Nadelhoffer, KL., Pairis, A., A. Raymond, P., Schimel, J. & E.Williamson, C. 2013: The impacts of climate change on ecosystem structure and function. -Front. Ecol. Environ. 11(9): 474-482.
https://doi.org/10.1890/120282
Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M. & Tatian, M.R. 2017: Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros. -J GIS RS for Natur Res. 8(3): 1-14.
Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh-Esfahani, M. & Tatian, M.R. 2018: Climatic niche modeling of Persian oak Using Flexible discriminate analysis in Chaharmahal and Bakhtiari province. -JPE 5(11): 35-48.
Haidarian, M., Tamartash, R., Jafarian-Jeloudar, Z., Tarkesh, M. & Tataian, M.R. 2021: The effects of climate change on the future distribution of Astragalus adscendens in central zagros, Iran. -JRS 11(2): 152-170.
Haidarian-Aghakhani, M. & Sangoony, H. 2019: Predicting the impact of climate change on the distribution of Pistacia atlantica in the Central Zagros. -JPE 6(13): 197-214.
Hartemink, A. E., & McSweeney, K. 2014: Soil carbon. -Cham: Springer
Hosseini, N., Ghorbanpour, M. & Mostafavi, H. 2024: Habitat potential modelling and the effect of climate change on the current and future distribution of three Thymus species in Iran using MaxEnt. -Sci. Rep.14(1): 3641. https://doi.org/10.1038/s41598-024-53405-5
Hosseini, N., Ghorbanpour, M. & Mostafavi, H. 2024c: The influence of climate change on the future distribution of two
Thymus species in Iran: MaxEnt model-based prediction. -BMC Plant Biol 24: 269
https://doiorg/101186/s12870-024-04965-1
Hosseini, N., Mostafavi, H. & Ghorbanpour, M. 2024: The future range of two Thymus daenensis subspecies in Iran under climate change scenarios: MaxEnt model-based prediction. -Genet Resour Crop Evol 1-18. https://doi.org/10.1007/s10722-024-01998-1
Hosseini, N., Mostafavi, H., & Sadeghi, S.M.M. 2024: Impact of climate change on the future distribution of three
Ferulago species in Iran using the MaxEnt model. -IEAM.
https://doi.org/10.1002/ieam.4898
Hosseini, S.S., Tavili, A., Borj, A.A.N. & Sigaroodi, S.K. 2022: Potential effects of climate change on the geographic distribution of the
Hordeum bulbosum L. in the central Zagros region. -Journal of Natural Environment 74(4): 747-758.
https://doi.org/10.22059/jne.2022.330501.2294.
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., E. Zimmermann, N., Linder, P. & Kessler, M. 2017: Climatologies at high resolution for the earth’s land surface areas. -Sci. Data 4: 170122. https://doi.org/10.1038/sdata.2017.122
Khajoei Nasab, F., Mehrabian, A. & Mostafavi, H. 2020: Mapping the current and future distributions of Onosma species endemic to Iran. -JAL 12(6): 1031-1045. https://doi.org/10.1007/s40333-020-0080-z
Khajoei Nasab, F., Mehrabian, A., Mostafavi, H. & Nemmati, A. 2022b: The influence of climate change on the suitable habitats of
Allium species endemic to Iran. -Environ. Monit. Assess. 194: 169.
https://doi:10.1007/s10661-022-09793-0.
Khajoei Nasab, F., Parshkouh, A.N. & Mehrabian, A.R. 2022a: Predicting the effect of climate change on the distributionof
Echium amoenum and
Echium italicum in Iran. -Iran. J. Appl. Ecol. 10 (4):1-21. https://doi.org/
10.47176/ijae.10.4.12555
Khajoei Nasab, F., Mehrabian, A., Chakerhosseini M. & Biglari, N. 2024a: Climate change causes the displacement and shrinking of the optimal habitats of nectar-producing species of Nepeta in Iran. -Theor. Appl. Climatol. 155: 249-260. https://doi.org/10.1007/s00704-023-04629-4
Khajoei Nasab, F., Shakoori, Z. & Zeraatkar, A. 2024: Modeling the richness and spatial distribution of the wild relatives of Iranian pears (Pyrus L.) for conservation management. -Sci Rep 14: 18196. https://doi.org/10.1038/s41598-024-69135-7
Lenoir, J. & Svenning, J.C. 2013: Latitudinal and elevational range shifts under contemporary climate change. -Encyclopedia biodiversity 599-611. https://doi.org/10.1016/B978-0-12-822562-2.00386-8
Liang, Q., Xu, X., Mao, K., Wang, M., Wang, K., Xi, Z. & Liu, J. 2018: Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. -J. Biogeogr. 45(6): 1334-1344.
https://doi.org/10.1111/jbi.13229
Limaki, M.K., Nimvari, M. E.H., Alavi, S.J., Mataji, A. & Kazemnezhad, F. 2021: Potential elevation shift of oriental beech (
Fagus orientalis L.) in Hyrcanian mixed forest ecoregion under future global warming. -
Ecol. Model. 455: 109637.
https://doi.org/10.1016/j.ecolmodel.2021.109637
Makki, T., Mostafavi H., Matkan A. & Aghighi H. 2021: Modelling climate-change impact on the spatial distribution of
Garra rufa (Heckel, 1843) (Teleostei: Cyprinidae). - Iran. J. Sci. Technol. TRANS. 45(3): 795-804.
https://doi.org/10.1007/ s40995-021-01088-2
Makki, T., Mostafavi, H., Matkan, A. A., Aghighi, H., Valavi, R., Chee, Y. E. & Teimori, A. 2023: Impacts of climate change on the distribution of riverine endemic fish species in Iran, a biodiversity hotspot region. -Freshw. Biol. 68(6): 1007-1019.
https://doi.org/10.1111/fwb.14081
Makki, T., Mostafavi, H., Matkan, A. A., Valavi, R., Hughes, R. M., Shadloo, S., Aghighi, H., Abdoli, A., Teimori, A., Eagderi, S., & W.Coad, B. 2023: Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. -Sci. Rep. 13(1): 14347.
https://doi.org/10.1038/s41598-023-41406-9
Mehrnia, M., & Hosseini, Z. 2023: The best-selling medicinal plants of Khorramabad apothecary shop. Res. Ethnobiol. Conserv. 1(1): 21-31. https//doi.org/10.22091/ethc.2023.9680.1004
Momeni Damaneh, J., Ahmadi, J., Rahmanian, S., Sadeghi, S.M.M., Nasiri, V. & Borz, S.A. 2022: Prediction of wild pistachio ecological niche using machine learning models. -Ecol. Inform. 72: 101907.
https://doi.org/10.1016/j.ecoinf.2022.101907
Morueta-Holme, N., Engemann, K., Sandoval-Acuña, P., Jonas, J.D., Segnitz, R. M. & Svenning, J. C. 2015: Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. -PNAS 112(41): 12741-12745.
https://doi.org/10.1073/pnas.150993811
Mozaffarian, V. 2007: Umbelliferae. In: Assadi M. & al. (eds.), Fl. of Iran, no. 54. -Tehran. Research Institute of Forests & Rangelands.
Mozaffarian, V. 2013: Identification of medicinal and aromatic plants of Iran. -Tehran: Farhang-e Moaser Publication.
Mozaffarian, V. 2017: Flora of Chaharmahal and Bakhtiari. Chaharmahal and Bakhtiari. -Tehran: Agricultural and Natural Resources Research and Education Center.
Naghipour Borj, A.A., Haidarian Aghakhani, M. & Sangoony, H. 2019: Application of ensemble modeling method in predicting the effects of climate change on the distribution of Fritillaria imperialis L. -J. Plant Res. 32(3): 747-758. https://doi.org/20.1001.1.23832592.1398.32.3.8.5
Naghipour, A.A., Ashrafzadeh, M. R. & Haidarian, M. 2021: Assessing the potential distribution of Juniperus excelsa M. Bieb. under current and future climate scenarios in the Chaharmahal va Bakhtiari province, Iran. -SRLS 2(3): 8-17. https://doi.org/10.22034/srls.2021.537634.1020
Naghipour, A.A., Asl, S.T., Ashrafzadeh, M.R. & Haidarian, M.2021: Predicting the potential distribution of Crataegus azarolus L. under climate change in central Zagros, Iran. -JWB 5(4): 28-43. https://doi.org/10.22120/jwb.2022.545305.1280
Naimi, B. 2023: Uncertainty analysis for species distribution models (2.1-7).
https://r-gis.net/
Oke, O.A. & Tompson, K.A. 2015: Distribution models for mountain plant species: the value of elevation. -Ecol. Model. 301: 72-77.
https://doi.org/10.1016/j. ecolmodel.2015.01.019
Oshunsanya, S.O. 2019: Introductory chapter: Relevance of Soil PH to Agriculture. In IntechOpen eBooks. https:// doi.org/10.5772/intechopen.82551
Phillips, S. J., Anderson, R. P. & Schapire, R. E. 2006: Maximum entropy modeling of species geographic distributions. -Ecol. Model. 190(3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S.J., Dudík, M. & Schapire, R.E. 2004: A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banf, AB, Canada, 4−8 July 2004; pp. 655-662.
Rajakaruna, N., & Boyd, R.S. 2008: Edaphic factor. In S. E. Jorgensen & B. D. Fath (Eds.), General ecology: Encyclopedia of ecology (2nd ed., pp. 1201-1207). -Amsterdam: Elsevier Science.
Rana, S.K., Rana, H.K., Ghimire, S.K., Shrestha, K.K. & Ranjitkar, S. 2017: Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. -JMS 14: 558-570. https://doi.org/10.1007/s11629-015-3822-1
Rana, S.K. 2014: Species Distribution and Ecological Niche Modelling of Alnus Species in Nepal (M.Sc. dissertation). Central Department of Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal.
Rechinger, K.H. & S. Snogerup. 1987: Umbelliferea. In: Rechinger, K.H. (ed.) Flora Iranica, Vol. 162. -Akademische Druck- u. Verlagsanstalt, Graz.
Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. 2007: The application of predictive modelling of species distribution to biodiversity conservation. -Divers. distrib. 243-251. https://doi.org/10.1111/j.1472-4642.2007.00356.x
Salick, J., Fang, Z. & Byg, A. 2009: Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. -Glob. Environ. Change. 19(2): 147-155. https://doi.org/10.1016/j.gloenvcha.2009.01.008
Sarkar, D., Jagannivsan, H., Debnath, A. & Talukdar, G. 2024: A systematic review on the potential impact of future climate change on India’s biodiversity using species distribution model (SDM) studies: trends, and data gaps. -JBC 1-17. https://doi.org/10.1007/s10531-024-02785-1
Sedaghat Boroujeni, L., Hohataleslami, M., Keramat, J. & Ghasemi Pirbalouti, A. 2013: Antioxidant activity of essential oil of Heracleum lasiopetalum fruits on chemical properties of potato chips. -J. Herb. Med. 3(4): 249-256.
Sheikhzadeh Ghahnaviyeh, A., Tarkesh Esfahani, M., Bashari, H. & Soltani Koupaei, S. 2021: Investigating geographical shifts of Astragalus verus under climate change scenarios using random-forest modeling (Case study: Isfahan and Chaharmahal va Bakhtiari provinces). -Rangeland 15(4): 589-602. https://doi.org/20.1001.1. 20080891.1400.15.4.13.4
Sonboli, A., Azizian, D., Yousefzadi, M., Kanani, M.R. & Mehrabian, A.R. 2007: Volatile constituents and antimicrobial activity of the essential oil of Tetrataenium lasiopetalum (Apiaceae) from Iran. -Flavour Fragr. J. 22(2): 119-122. https://doi.org/10.1002/ffj.1767
Tavousi, T., Kajehamiri Khaledi, C. & Salari Fanoudi, M. M. R. 2021: Review of Iran's Climatic Zoning Based on Some Climate Variables. -Desert Manag. 8(16): 17-36. https://doi.org/10.22034/jdmal.2021.243138.
Teimoori Asl, S., Naghipoor, A., Ashrafzadeh, M. & Heydarian, M. 2020: Predicting the impact of climate change on potential habitats of Stipa hohenackeriana Trin & Rupr in Central Zagros. -Rangeland 14(3): 526-538.
Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden. 2023. Available at: http://sweetgum.nybg.org/science/ih/ (Accessed: 15 December 2024).
Thuiller, W. 2003: Biomod - optimizing predictions of species distributions and projecting potential future shifts under global change. -Glob. Change Biol. 9(10): 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
Zeraatkar, A., Iranmanesh, Y., Mokhtarpour, T., Shirmardi, H., Jamzad, Z., Jalili, A., Mousavi Vardanjani, S. A., & Soleimani, E. 2023: Kelussia odoratissima Mozaff., a green jewel in Zagros' rich floral treasure: Conservation status, threats, and opportunities. Iran Nature 8(4): 123-134. https://doi.org 10.22092/irn.2023.362276.1516
Zeraatkar, A. & Khajoei Nasab, F. 2023: Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions. -Environ. Dev. Sustain. https://doi.org/10.1007/s10668-023-03223-y
Zu, K., Wang, Z., Zhu, X., Lenoir, J., Shrestha, N., Lyu, T., Luo, A., Li, Y., Ji, C., Peng, S., Meng, J. & Zhou, J. 2021: Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. -Sci. Total Environ. 783: 146896. https://doi.org/10.1016/j.scitotenv. 2021.146896