Comparative analysis of tandem repeats in four Aubrieta genomes

Document Type : Research Paper

Authors

1 Department of Plant Protection, Faculty of Agriculture, University of Kufa Najaf-Iraq

2 University of Duhok College of Agricultural Engineering Sciences Kurdistan Region of Iraq Duhok

3 , Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom & Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

10.22092/ijb.2024.364281.1443

Abstract

The genus Aubrieta Adan. (Brassicaceae) is widely distributed and diverged across different elevations. The genome components and organization of this plant are still less understood. Tandemly repeated sequences were examined in whole genome raw reads of four Aubrieta species using Next Generation Sequencing (NGS) and bioinformatics techniques. Six clusters of tandem repeats were found based on RepeatExplorer and TAREAN pipelines; one cluster in A. pinardii (ApinSAT1L) and A. scardica (AscaSAT95 H), two clusters in A. erubescens (AeurSAT132L and AeurSAT230L), and A. gracilis (AgraSAT2L and AgraSAT15H) with the GenBank accession numbers (PP391544, PP391547, PP391548, PP391549, PP391545, PP391546) respectively, have been found within all examined genomes. The tandem repeated features were confirmed using de novo assembly contigs. Variable numbers of genome proportions and copies have been recorded for these elements. Aubrieta erubescens has a high copy number compared to A. scardica which has lower copies. The arrangement of tandem repeat clusters within the genome was tandemly organized except for A. scardica (AscaSAT95 H) which was dispersed. Therefore, these genomes can be explained in terms of composition, structure, and evolutionary relationships.

Keywords


Article Title [Persian]

تجزیه و تحلیل مقایسه‌ای توالی‌های تکرار شده در ژنوم چهار گونه از جنس Aubrieta (Brassicaceae)

Authors [Persian]

  • اسامة ناظم العیساوی 1
  • جوتیار محمد 2
  • پاتریک هسلوپ هاریسون 3
1 گروه آموزشی حفاظت گیاهی، دانشکده کشاورزی، دانشگاه کوفه، نجف، عراق
2 دانشکده علوم مهندسی کشاورزی، دانشگاه دهوک، منطقه کردستان عراق
3 گروه آموزشی ژنتیک و بیولوژی ژنوم، موسسه آینده محیط زیست، دانشگاه لیستر، انگلستان و آزمایشگاه‌های حفاظت منابع گیاهی و مصرف پایدار، استان گوانگدونگ چین و باغ گیاه‌شناسی جنوب چین، آکادمی علوم گوانگژو، چین
Abstract [Persian]

گونه‌های جنس Aubrieta Adan. (Brassicaceae) به‌طور گسترده در ارتفاعات مختلف پراکنده و از یکدیگر جدا شده‌اند. اجزا و سازمان ژنوم این گیاهان هنوز کمتر شناخته شده است. توالی‌های تکرار شده پشت سر هم در قرائت‌های خام کل ژنوم چهار گونه Aubrieta با استفاده از روش‌های توالی‌یابی نسل بعدی (NGS) و بیوانفورماتیک مورد بررسی قرار گرفتند. با استفاده از نرم افزارهای RepeatExplorer و TAREAN شش دسته توالی‌های تکراری بدست آمدند. یک دسته در A. pinardii (ApinSAT1L) ویک دسته در A. scardica (AscaSAT95 H) و دو دسته در A. erubescens (AeurSAT132L and AeurSAT230L) و دو دسته در A. gracilis (AgraSAT2L and AgraSAT15H)، به ترتیب با شماره ردیف های بانک ژنPP391544, PP391547, PP391548  PP391549, PP391545, PP391546, در همه ژنوم‌های بررسی شده مشاهده گردید. ویژگی‌های تکرارهای پشت سرهم توالی‌ها با استفاده از روش مونتاژ از نو بخش‌هایی از توالی‌های DNA که به‌گونه‌ای همپوشانی دارند، تأیید شدند. تعداد متغیری از نسبت‌ها و کپی‌های ژنوم برای این عناصر ثبت شده است. Aubrieta erubescens در مقایسه با A. scardica که کپی‌های کمتری دارد، تعداد کپی بالایی دارد. ترتیب خوشه‌های تکرار پشت سر هم در ژنوم به جز A. scardica (AscaSAT95 H) که پراکنده شده بود به‌صورت پشت سر هم سازماندهی شد. بنابراین، این ژنوم‌ها را می‌توان از نظر ترکیب، ساختار و روابط تکاملی توضیح داد. تعداد متغیری از نسبت‌ها و کپی‌های ژنوم برای این عناصر ثبت شده است. Aubrieta erubescens در مقایسه با A. scardica که کپی‌های کمتری دارد، تعداد کپی بالایی دارد. ترتیب خوشه‌های توالی‌های تکراری پشت سر هم در ژنوم به‌جز A. scardica (AscaSAT95 H) که پراکنده شده بود، به‌صورت پشت سر هم سازماندهی شد. بنابراین، این ژنوم‌ها را می‌توان از نظر ترکیب، ساختار و روابط تکاملی توضیح داد.

Keywords [Persian]

  • Brassicaceae
  • evolution
  • repeat sequences
  • next-generation sequencing (NGS)
  • bioinformatics
Alisawi, O., Muhammed, J. & Heslop-Harrison, J. 2022: Endogenous pararetroviruses sequences can be used as markers to differentiate four Aubrieta species. -Jilin Daxue Xuebao (Gongxueban) 41: 176-184.
Alix, K., Gérard, P., Schwarzacher, T. & Heslop-Harrison, J. 2017: Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. -Ann. Bot. 120: 183-194.
Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. 1990: Basic local alignment search tool. -J. Mol. Biol. 215: 403-410.
Ančev, M. & Goranova, V. 2009: Aubrieta (Brassicaceae) in the Bulgarian flora. -Phytologia Balcanica 15: 43-50.
Benson, D., Boguski, M., Lipman, D.J. & Ostell, J. 1990: The national center for biotechnology information. -Genomics 6: 389-391.
Biscotti, M., Olmo, E. & Heslop-Harrison, J. 2015: Repetitive DNA in eukaryotic genomes.
-Chromosome Res. 23: 415-420.
Boissier, E. 1867: Flora Orientalis. 1: 249-254. -Basel: H. Georg.
Bourque, G., Burns, K., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M. Izsvák, Z., Levin, H., Macfarlan, T. & Mager, D. 2018: Ten things you should know about transposable elements. -Genome biol. 19: 1-12.
Cullen, J. 1965: Aubrieta Adans., in Davis, P.H., ed. Flora of Turkey and the East Aegean Islands, 1: 444-447. -Edinburgh: Edinburgh University Press.
Dönmez, A., Aydin, Z., Kaya, Y. & Yüzbaşioğlu, İ. 2023: Aubrieta birolmutlui (Brassicaceae), a new species from Eastern Turkey with molecular phylogenetic support. -Phytotaxa 579: 278-288.
Dönmez, A., Aydin, Z. & Koch, M. 2017: Aubrieta alshehbazii (Brassicaceae), a new species from Central Turkey. -Phytotaxa 299: 103-110.
Doyle, J. 1990: Isolation of DNA from small amounts of plant tissues. -BRL Focus 12: 13-15.
Franzke, A., German, D., Al-Shehbaz, I. & Mummenhoff, K. 2009: Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. -Taxon 58: 425-437.
Gaeta, R., Pires, J., Iniguez-Luy, F., Leon, E. & Osborn, T. 2007: Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. -Plant Cell 19: 3403-3417.
Grandbastien, M. A. 1998: Activation of plant retrotransposons under stress conditions Trends.
-Plant Science 3: 181-187.
Haudry, A., Platts, A., Vello, E., Hoen, D., Leclercq, M., Williamson, R., Forczek, E., Joly-Lopez, Z., Steffen, J., Hazzouri, K. & Dewar, K. 2013: An atlas of over 90.000 conserved noncoding sequences provides insight into crucifer regulatory regions. -Nat. Genet. 45: 891-898.
Hemleben, V., Kovarik, A., Torres-Ruiz, R., Volkov, R. & Beridze, T. 2007: Plant highly repeated satellite DNA: molecular evolution. distribution and use for the identification of hybrids. -Syst. Biodivers. 277-289.
Heslop-Harrison, J. 2000: Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. -Plant Cell 12: 617-635.
Hloušková, P., Mandáková, T., Pouch, M., Trávníček, P. & Lysak, M. 2019: The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. -Ann. Bot. 124: 103-120.
Hohmann, N., Wolf, E., Lysak, M. & Koch, M. 2015: A time-calibrated road map of Brassicaceae species radiation and evolutionary history. -Plant Cell 27: 2770-2784.
Jalas, J., Suominen, J. & Lampinen, R. 1994: Atlas Florae Europaeae 10 Cruciferae (Sisymbrium to Aubrieta). -Committee for Mapping the Flora of Europe, Helsinki.
Kapustová, V., Tulpová, Z., Toegelová, H., Novák, P., Macas, J., Karafiátová, M., Hřibová, E., Doležel, J. & Šimková, H. 2019: The dark matter of large cereal genomes: long tandem repeats. -Int. J. Mol. Sci. 20: 2483.
Kaya, Y., Aydın, Z., Cai, X., Wang, X. & Dönmez, A. 2022: Genome-wide characterization of two Aubrieta taxa: Aubrieta canescens subsp. canescens and Au. macrostyla (Brassicaceae). -AoB Plants 14: 35.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton S., Cooper, A., Markowitz, S. & Duran, C. 2012: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. -Bioinformatics 28: 1647-1649.
Kingsford, C., Schatz, M. & Pop, M. 2010: Assembly complexity of prokaryotic genomes using short reads. -BMC Bioinform. 11: 21.
Klíma, M., Jozová, E., Jelínková, I., Kučera, V., Hu, S. & Čurn, V. 2019: Early in vitro selection of winter oilseed rape (Brassica napus L.) plants with the fertility restorer gene for CMS Shaan 2A via non-destructive molecular analysis of microspore-derived embryos. -Czech J. Genet. Plant Breed. 55: 162-165.
Koch, M., Karl, R. & German, D. 2017: Underexplored biodiversity of Eastern Mediterranean biota: systematics and evolutionary history of the genus Aubrieta (Brassicaceae). -Ann. Bot. 119: 39-57.
Lamb, J., Yu, W., Han, F. & Birchler, J. 2007: Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. -Curr. Opin. Plant Biol. 10: 116-122.
Li, Y., Korol, A., Fahima T. & Nevo, E. 2004: Microsatellites within genes: structure, function,
 
and evolution. -Mol. Biol. Evol. 21: 991-1007.
Lusinska, J., Majka, J., Betekhtin, A., Susek, K., Wolny, E. & Hasterok, R. 2018: Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon B. stacei and B. hybridum. -Ann. Bot. 122: 445-459.
Lysak, M. & Koch, M. 2011: Phylogeny, genome, and karyotype evolution of crucifers (Brassicaceae).
-Genetics and Genomics of the Brassicaceae 1-31. Springer, New York, NY.
Ma, X. & Gustafson, J. 2008: Allopolyploidization-accommodated genomic sequence changes in triticale. -Ann. Bot. 101: 825-832.
Mandáková, T., Hloušková, P., Koch, M. & Lysak, M. 2020: Genome evolution in Arabideae was marked by frequent centromere repositioning. -Plant Cell 32: 650-665.
Mattfeld, J. 1939: The species of the genus Aubrieta Adanson. -Quart. Bull. Alp. Gard. Soc. 7: 157-181.
Muhammed, J. 2017: Systematic and Genomic Studies in the Genus Aubrieta (Brassicaceae), (Doctoral dissertation. University of Leicester).
Mustafa, S., Schwarzacher, T. & Heslop-Harrison, J. 2018: Complete mitogenomes from Kurdistani sheep: abundant centromeric nuclear copies representing diverse ancestors Mitochondrial DNA. -Part A 1-14.
Novak, P., Neumann, P. & Macas, J. 2010: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data.
- BMC Bioinform. 11: 378.
Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. 2013: RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. -Bioinformatics 29: 792-793.
Pellicer, J., Hidalgo, O., Dodsworth, S., & Leitch, I. 2018: Genome size diversity and its impact on the evolution of land plants. -Genes 9: 88.
Sharma S. & Raina, S. 2005: Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes Cytogenet.
-Genome Res. 109: 15-26.
Vershinin, A. & Heslop-Harrison, J. 1998: Comparative analysis of the nucleosomal structure of rye, wheat and their relatives Plant. -Mol. Biol. 36: 149-161.
Vlk, D. & Řepková, J. 2017: Application of next-generation sequencing in plant breeding. -Czech J. Genet. Plant Breed. 53: 89-96.
Yüzbaşıoğlu, S., Koch, M. & Al-Shehbaz, I. 2015: Proof of a knowledge database concept. Aubrieta ekimii (Brassicaceae), a new species from NW Anatolia (Turkey): morphological and molecular support. -Plant Systematics and Evolution 301: 2043-2055.
Zerbino, D. & Birney, E. 2008: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. -Genome Res.18: 821-829.