Abed, R.M., Garcia-Pichel, F. & Hernández-Mariné, M. 2002: Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. -Arch. Microbiol. 177: 361–370.
DOI: 10.1007/s00203-001-0390-2
Bohunická, M., Pietrasiak, N., Johansen, J., Berrendero-Gomez, E., Hauer, T., Gaysina, L. & Lukešová, A. 2015: Roholtiella, gen. nov. (Nostocales, Cyanobacteria)- a tapering and branching member of the Nostocaceae (Cyanobacteria). -Phytotaxa 197(2): 84–103.
DOI: 10.11646/phytotaxa.197.2.2
Boyer, S.L., Flechtner, V.R. & Johansen, J.R. 2001: Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics; A case study in cyanobacteria. -Mol. Biol. Evol. 18(6): 1057–1069.
DOI: 10.1093/oxfordjournals.molbev.a003877
Cai, F., Li, X., Yang, Y., Jia, N., Huo, D. & Li, R. 2019: Compactonostoc shennongjiaensis gen. & sp. nov.(Nostocales, Cyanobacteria) from a wet rocky wall in China. -Phycologia 58(2): 200–210.
DOI: 10.1080/00318884.2018.1541270
Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta D. A. & Papini, A. 2015: Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. -Conserv. 24: 739–757. DOI: 10.1007/s10531-015-0888-6
Chlipala, G. E., Mo, S. & Orjala, J. 2011: Chemodiversity in freshwater and terrestrial cyanobacteria- a source for drug discovery. -Curr. Drug Targets. 12(11): 1654–1673.
Hall, T.A. 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. -Nucleic acids symposium series 41: 95–98. London.
Iteman, I., Rippka, R., Tandeau de Marsac, N. & Herdman, M. 2000: Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. -Microbiology. 146(6): 1275–1286.
DOI: 10.1099/00221287-146-6-1275
Johansen, J.R., Kovacik, L., Casamatta, D.A., Iková, K.F. & Kastovský, J. 2011: Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). -Nova Hedwigia 92(3): 283.
DOI: 10.1127/0029-5035/2011/0092-0283
Katoh, H., Furukawa, J., Tomita-Yokotani, K. & Nishi, Y. 2012: Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. -Biochim Biophys Acta Bioenerg. 1817(8): 1499–1505.
Katoh, K. & Standley, D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. -Mol. Biol. Evol. 30(4): 772–780. DOI: 10.1093/molbev/mst010
Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y. S., Lee, J.H. & Yi, H. 2012: Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. -IJSEM. 62(3): 716–721.
DOI: 10.1099/ijs.0.038075-0
Komárek, J. 2016: A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. -Eur. J. Phycol. 51(3): 346–353.
DOI: 10.1080/09670262.2016.1163738
Miscoe, L.H., Johansen, J.R., Kociolek, J.P., Lowe, R.L., Vaccarino, M.A., Pietrasiak, N. & Sherwood, A.R. 2016: The diatom flora and cyanobacteria from caves on Kauai, Hawaii. -Acta Bot. Hung. 58: 3–4.
Neilan, B.A., Jacobs, D. & Goodman, A.E. 1995: Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. -AEM. 61(11): 3875–3883.
DOI: 10.1128/aem.61.11.3875-3883.1995
Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. 2015: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. -Mol. Biol. Evol. 32(1): 268–274.
DOI: 10.1093/molbev/msu300
Nowruzi, B. 2022: Cyanobacteria Natural Products as Sources for Future Directions in Antibiotic Drug Discovery. -
Recent Advances and New Perspectives 1: 1–19. DOI: 10.5772/intechopen.106364
Nowruzi, B. & Afshari, G. 2023: In silico Analysis of Molecular Phylogeny of Genes Involved in the Synthesis of Bioactive Compounds in Cyanobacteria Strains Located in Tehran Cascade. -JJCMB. 14(1).
DOI: 10.5812/jjcmb-132400
Nowruzi, B. & Becerra-Absalón, I. 2022: A Novel Potentially Toxic Cyanobacterial Species From the Genus Desmonostoc, Desmonostoc Alborizicum sp. nov., Iisolated From a Water Supply System of IranA. -Res. Sq. 1: 1–19.
Nowruzi, B., Hutarova, L. 2023: Structural and functional genes, and highly repetitive sequences commonly used in the phylogeny and species concept of the phylum Cyanobacteria. -Cryptogamie, Algologie. 44(3): 59–84.
DOI: 10.5252/cryptogamiealogie2023v44a3
Nowruzi, B., Hutárová, L., Absalón, I.B. & Liu, L. 2022: A new strain of Neowestiellopsis (Hapalosiphonaceae): first observation of toxic soil cyanobacteria from agricultural fields in Iran. -BMC Microbiol. 22(1): 1–13. DOI: 10.1186/s12866-022-02525-x
Nowruzi, B. & Lorenzi, A.S. 2023: Molecular phylogeny of two Aliinostoc isolates from a paddy field. -Plant Syst. Evol. 309(2): 11.
DOI: 10.1007/s00606-023-01848-0
Nowruzi, B. & Porzani, S.J. 2021: Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. -J. Appl. Toxicol. 41(4): 510–548. DOI: 10.1002/jat.4088
Nowruzi, B. & Shalygin, S. 2021: Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, Cyanobacteria).
-Fottea 21(2): 235–246.
Prabha, R. & Singh, D.P. 2019: Cyanobacterial phylogenetic analysis based on phylogenomics approaches render evolutionary diversification and adaptation: an overview of representative orders. -3 Biotech. 9: 1–16. DOI:10.1007/s13205-019-1635-6
Premanandh, J., Priya, B., Teneva, I., Dzhambazov, B., Prabaharan, D. & Uma, L. 2006: Molecular characterization of marine cyanobacteria from the Indian subcontinent deduced from sequence analysis of the phycocyanin operon (cpcB-IGS-cpcA) and 16S-23S ITS region. -J. Microbiol. 44(6): 607–616.
Rantala, A., Fewer, D.P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T. & Sivonen, K. 2004: Phylogenetic evidence for the early evolution of microcystin synthesis. -PNAS. 101(2): 568–573.
DOI: 10.1073/pnas.0304489101
Rastogi, R.P., Singh, S.P., Häder, D.P. & Sinha, R.P. 2010: Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. -BBRC. 397(3): 603–607.
Řeháková, K., Johansen, J.R., Casamatta, D.A., Xuesong, L. & Vincent, J. 2007: Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov.
-Phycologia 46: 481–502.
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. 1979: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. -Microbiology. 111(1): 1–61.
Rivandi, M., Nowruzi, B. & Fahimi, H. 2021: Molecular phylogenetic study of toxic cyanobacterium Anabaena sp. strain B3 isolated from Lavasan Lake, Tehran (Iran). -Rostaniha 22(1): 120–133.
Sciuto, K., Andreoli, C., Rascio, N., La Rocca, N. & Moro, I. 2012: Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). -Cladistics 28(4): 357–374.
Seo, P.S. & Yokota, A. 2003: The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. -J. Gen. Appl. Microbiol. 49(3): 191–203.
Shardlow, T. 2021: Identification and characterization of toxic cyanobacteria in two forested maritime watersheds in North America, University of Waterloo. -UWSpace.
DOI: hdl.handle.net/10012/17055
Tan, L.T. 2007: Bioactive natural products from marine cyanobacteria for drug discovery. -Phytochemistry. 68(7): 954–979.
Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. 2003: Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. -AEM. 69(9): 5157–5169.
DOI: 10.1128/AEM.69.9.5157-5169.2003
Tawong, W., Pongcharoen, P. & Saijuntha, W. 2022: "Neocylindrospermum variakineticum gen. & sp. nov.(Nostocales, Cyanobacteria), a novel genus separated from Cylindrospermum using a polyphasic method. -Phycologia. 61(6): 653–668. DOI: 10.1080/00318884.2022.2130829
Vestola, J., Shishido, T.K., Jokela, J., Fewer, D.P., Aitio, O., Permi, P., Wahlsten, M., Wang, H., Rouhiainen, L. & Sivonen, K. 2014: Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. -Proceedings of the National Academy of Sciences 111(18): E1909–E1917.
DOI: 10.1073/pnas.1320913111
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzéby, J., Amann, R. & Rosselló-Móra, R. 2014: Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. -Nat. Rev. Microbiol. 12(9): 63645. DOI: 10.1038/nrmicro3330