IRANIAN JOURNAL OF BOTANY 30(2), 2024 DOI: 10.22092/ijb.2024.366109.1473

ALPINE AND SUB-ALPINE FLORISTIC SURVEY OF HASHTAD MOUNTAIN (CENTRAL ZAGROS), IRAN

A. Akhavan Roofigar, M. Amini Rad & A. Bagheri

Received 2024.06.17; accepted for publication 2024.08.22

Akhavan Roofigar, A., Amini Rad, M. & Bagheri, A. 2024.12.30: Alpine and sub-alpine floristic survey of Hashtad Mountain (Central Zagros), Iran. *-Iran. J. Bot. 30(2): 109-126.* Tehran.

The Hashtad Mountain, with an elevation of approximately 3770 m.a.s.l., is one of the highest peaks of the Zagros Mountains in the west of Isfahan province. The objective of the present work was to study the flora of this mountain across different altitudinal ranges. The results showed that Hashtad Mountain has a rich flora with a high plant diversity. A total of 212 taxa belonging to 39 families and 135 genera were identified. Asteraceae, represented by 27 species, was the largest family, followed by Fabaceae and Lamiaceae with 26 and 20 species, respectively. *Astragalus*, with 21 species, was identified as the largest genus. The region was dominated by hemicryptophytes (59%) and chamaephytes (13.7%) in terms of life form. In terms of geographical distribution, 65.5% of the identified species belong to the Irano-Turanian region. 63 species (29.7%) were endemic to Iran, with 21 species (9.9%) specifically endemic to the Zagros, highlighting the area's rich biodiversity. However, mining, road construction, and overgrazing are significant threats to the biodiversity of this area. Protection measures, including defining protected areas and regulating human activities, are necessary to conserve the biodiversity of Hashtad Mountain.

Azadeh Akhavan Roofigar (correspondence<a.akhavan@areeo.ac.ir>), Assistant Prof., Natural Resources Research Division, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran. -Mohammad Amini Rad, Associate Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, AREEO, Tehran, Iran. -Ali Bagheri, Associate Prof., Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Keywords: Biodiversity; conservation; endemism; floristic study; Isfahan

بررسی فلوریستیک نواحی آلپی و نیمه آلپی کوه هشتاه (زاگرس مرکزی)، ایران آزاده اخوان روفیگر: استادیار پژوهش، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران محمد امینی راد: دانشیار پژوهش، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران علی باقری: دانشیار، گروه زیست شناسی گیاهی و جانوری، دانشکده علوم و فناوریهای زیستی، دانشگاه اصفهان، اصفهان، ایران کوه هشتاد با ارتفاع ۲۷۰ متر از سطح دریا، یکی از قلدهای مرتفع رشته کوه های زاگرس در غرب استان اصفهان، اصفهان، ایران هدف بررسی فلور این کوه در مناطق ارتفاعی مختلف انجام شد. نتایج این مطالعه نشاندهنده وجود تنوع بالای گونههای گیاهی در این منطقه است، در مجموع در این مطالعه ۲۱۲ آرایه متعلق به ۳۹ تیره و ۲۱۵ جنس شناسایی شدند. Asteraceae با ۷۲ گونه بزرگترین تیره گیاهی بوده و تیرههای و مجموع در این مطالعه ۲۱۲ آرایه متعلق به ۳۹ تیره و ۲۱۵ جنس شناسایی شدند. در این میان جنس گون (Astragalus) با ۲۱ گونه به عنوان بزرگترین جنس شناخته شد. فراوانترین شکل زیستی در این مطالعه همی کریتوفیتها (۹۵٪) و کامفیتها (۱۳/۷) بودند. علاوه برار ۲۹/۷) بزرگترین جنس شناخته شد. فراوانترین شکل زیستی در این مطالعه همی کریتوفیتها (۹۵٪) و کامفیتها (۱۳/۷) بودند. علاوه برار ۲۹/۷) بزرگترین جنس شناخته شد. فراوانترین شکل زیستی در این مطالعه همی کریتوفیتها (۹۵٪) و کامفیتها (۱۳/۷) بودند. علاوه براین، از نظر انحصاری ایران هستند، و از این میان ۲۱ گونه (۹/۹٪) بهطور خاص انحصاری زاگرس هستند که نشاندهنده تنوع زیستی بالای این منطقه است. با این حال، معدنکاوی، ساخت جاده و چرای مفرط دام، تهدیدات مهمی برای تنوع زیستی این منطقه محسوب میشوند. اقدامات حفاظتی از جمله ایجاد مناطق حفاظت شده و مدیریت فعالیتهای انسانی، برای حفظ تنوع زیستی کوه هشتاد ضروری است.

INTRODUCTION

The presence of two major phytogeographical kingdoms, Holarctic and Paleotropical, including the Irano-Turanian, Euro-Siberian, and Saharo-Sindian regions, has resulted in the formation of diverse biomes and habitats, including forests, plains, deserts, aquatic environments, and mountainous areas with peaks exceeding 4000 m in Iran (Noroozi & al. 2008). The majority of Iran's high-altitude areas belong to the Alborz and Zagros Mountain ranges (Jafari & al. 2014). The rocky paths and long hikes make it hard to reach these areas, so there's been little research on the plant diversity there. Altitude plays a critical role in the distribution of plant species in mountainous regions. The Earth's altitudinal zonation is generally divided into four main zones: the nival zone, the alpine zone, the montane zone, and the lowland zone (Jafari & al. 2015). The definition of alpine flora varies globally, influenced by factors such as latitude.

Generally, the alpine zone is defined as the altitude range above the tree line and below the nival zone (permanent snow areas) (Körner 2003). The majority of high mountains in Iran are concentrated in the Alborz and Zagros Mountains, respectively. Due to their geographical location, the altitudinal range of the alpine flora varies within these ranges. Noroozi & al. (2008) describe the alpine zones in the Alborz range as ranging from 3000 to 4000 m, with the nival zone above 4000 m. There is a paucity of sources that have studied the flora of high-altitude mountain regions, although some studies have been conducted (Pairanj & al. 2011; Rajai & al. 2011; Dehshiri & al. 2016; Dehshiri & Mahdavar 2016; Amini Rad 2020; Amini Rad & Pahlevani 2022; Mahmoodi & al. 2022; Moghanloo & al. 2023; Razbani & al. 2023). Further studies by Noroozi and colleagues have reinforced the notion of the biodiversity and phytogeography of Iran's alpine flora (Noroozi & al. 2008; 2014; 2016).

The climate in the Zagros Mountains, where Hashtad Mountain is situated, features cold, wet winters and hot, dry summers. Precipitation is unevenly distributed, with higher elevations receiving more rainfall, frequently in the form of snow, which supports the region's diverse vegetation (Noroozi & al. 2020). The region experiences a Mediterranean climate pattern, characterized by cold, wet winters and warm, dry summers. The varying climatic conditions across the Zagros Mountains create multiple microclimates that accommodate a diversity of plant species. These specific climatic factors, including temperature fluctuations and precipitation patterns, are crucial in determining the plant diversity observed on Hashtad Mountain. According to Archibold (1995), the dominance of hemicryptophytes in areas with such climates indicates a cold and mountainous environment.

In the contemporary era, the expansion of human populations and the increasing prevalence of environmental threats, including land-use changes, climate change, road construction, and particularly overgrazing, have resulted in the deterioration of numerous plant habitats, including those in mountainous regions (Díaz & al. 2019). Globally, ecological studies and biodiversity assessments identify priority habitats based on high plant species diversity, endemics, rare, and endangered species, and species with ornamental, medicinal, and other properties. Subsequently, these habitats are subjected to protective management.

Examining the local flora, collecting specimens with comprehensive details, and completing herbarium collections will greatly enrich botanical knowledge and deepen our understanding of plant geography and diverse habitats in these regions. Hashtad Mountain, situated in the western part of Isfahan Province, is regarded as one of the most significant mountains in the region. The 3770 m peak of Hashtad Mt. is located in Fereydunshahr County, Isfahan Province. The objectives of this study are to assess the species diversity and identify endemic species within the region, analyze the factors contributing to their vulnerability, and recommend conservation measures to protect and preserve the region's biodiversity.

MATERIALS AND METHODS

Study area

Hashtad Mt. is situated in the western region of Isfahan Province, within the administrative boundaries of Fereydunshahr County. The study area encompasses the alpine and sub-alpine zones of Hashtad Mt., with an elevation range from 2700 to 3770 m. The geographic coordinates of the highest peak (3770 m) are approximately N $33^{\circ}00'50''$ and E $49^{\circ}57'49''$. The definition of the alpine or subalpine elevation range is

based on previous studies (Noroozi & al. 2020) in similar regions of the Zagros Mountains. Specifically, in the context of the Zagros Mountains, the tree line often occurs around this elevation, marking the beginning of the subalpine and alpine zones characterized by the absence of trees and the dominance of alpine vegetation. The mountain is bordered by several villages and counties including in

A. Akhavan Roofigar & al. 111

the north, Moghandar; in the south, Chogyurt; in the east, Aghche; and in the west, Gurab. The main ways to access the peak of this mountain are through the villages of Aghche, Aga Gol, Tange Doozan and Haji Abad. Fieldwork was conducted during the growing seasons from 2022 to 2024. The region experiences various climatic conditions due to its location in the Zagros Mountains (Fig. 1).

Fig. 1. A view of Hashtad Mountain, showing various elevation zones and topographical features of the study area in the Central Zagros. An arrow indicates the peak of Hashtad Mountain (approximately 3770 m).

Data collection and sampling method

The initial identification of the study area was based on preliminary data. A general survey of the vegetation was conducted on the mountain, in various slopes. Plant specimens were collected from 2022 to 2024, during the growth period, which begins mid-spring and lasts until early summer.

21 excursions were conducted during these years, covering all main slope directions and elevations of Hashtad Mountain. A systematic approach was employed for the plant collection, to ensure that samples were gathered from all slope directions based on the topographical features of the region. Plant specimens were collected from each elevation zone. The classification of zones was based on previous studies and local vegetation characteristics, where elevations above 2500-2700 m were considered sub-alpine and alpine zones due to the presence of typical

alpine vegetation and the absence of tree cover. Elevations below 2500 m were classified as mountain zones. A significant proportion of the collected samples were from the sub-alpine and alpine zones (2700 to 3770 m), while fewer specimens were from the mountain zone (below 2500 m). During collection, habitat geographic coordinates, details. and photographs of the species were recorded. The specimens were collected, dried, mounted on herbarium sheets, labeled with their specific information (including scientific names, family names, herbarium number, altitude, coordinates, collector's name, and collection date), and deposited at the SFAHAN and TARI herbaria. Furthermore, specimens collected in previous years by other botanists from Hashtad Mountain and stored at the SFAHAN herbarium were also included in the dataset. The plant specimens were identified using relevant botanical

references, including Flora Iranica (Rechinger, 1963-2015) and Flora of Iran (Assadi & al. 1988-2023), as well as monographs and checklists (Fritsch & Abbasi 2013; Podlech & Zarre, 2013; Maassoumi, 2022). The Raunkiaer system (Raunkiaer 1934) was employed to classify life forms, and these classifications were verified through field observations during the study. Chorotypes were determined following Zohary (1973) and White & Leonard (1991). Furthermore, the list of identified species was compiled using data from Flora of Iran (Assadi & al. 1988-2023) and, where necessary, verified with Plants of the World Online (POWO).

RESULTS

Species diversity

In this study, a total of 400 specimens were collected from Hashtad Mt., of these, 212 species from

IRAN. J. BOT. 30 (2), 2024

135 genera and 39 families were recorded from the alpine and sub-alpine zones (Figs. 2 & 3, and Table 1). The most prevalent family in the flora of Hashtad Mt. was Asteraceae, which included 18 genera (13.3%) and 27 species (12.7%). The next prevalent family was Fabaceae, with six genera (4.4%) and 26 species (12.2%). Lamiaceae represented ten genera (7.4%) and 20 species (9.4%), while Apiaceae with 13 genera (9.6%) and 17 species (8%), followed by Brassicaceae comprised 12 genera (8.8%) and 16 species (7.5%), Caryophyllaceae (seven genera and 12 species), and Poaceae (nine genera and 11 species), respectively. The genera with the highest taxa included Astragalus L. with 21 species (9.9%), Euphorbia L., Allium L., and Stachys L. each with 5 species (2.3%). The remaining genera had fewer than five species each, as detailed in Table 1.

Fig. 2. Representative plant species from Hashtad Mountain: A, Allium ubipetrense; B, A. minutiflorum; C, Tanacetum persicum; D, Astragalus murinus; E, A. inexpectatus; F, Ferulago angulata; G, Jurinea meda; H, Stachys pilifera; I, Ferula assa-foetida.

Fig. 3. The number of genera and species in each family in Hashtad Mt. (only the 8 largest families are shown).

Life forms

The life forms observed in the study area were classified into the following categories: hemicryptophytes (125 species, 59%), chamaephytes (29 species, 13.7%), geophytes (26 species, 12.2%),

therophytes (24 species, 11.3%), and phanerophytes (8 species, 3.8%). Hemicryptophytes were the most common life-forms observed, followed by chamaephytes and geophytes (Fig. 4).

Fig. 4. The life forms of taxa on Hashtad Mountain: Ch, chamaephytes; Ge, geophytes; He, hemicryptophytes; Ph, phanerophytes; Th, therophytes.

Chorotypes

The most common chorotype was Irano-Turanian (IT), accounting for 65.5% of the species (139 species). Other chorotypes included IT/Euro-Siberian (30

species), IT/ES/Mediterranean, (19 species), IT/M (4 species), IT/ES/Saharo-Sindian, (2 species), IT/SS (2 species), IT/M/SS (1 species), cosmopolitan (4 species), and multiregional (10 species) (Fig. 5).

Fig. 5. The chorotypes of taxa on Hashtad Mountain: IT, Irano-Turanian; ES, Euro-Siberian; M, Mediterranean; SS, Saharo-Sindian; Cosm, Cosmopolitan; Mult, Multiregional.

Endemic and rare species

A total of 63 Iranian endemic species (29.7%) were identified in the study area, of which 21 species (9.9%) are also endemic to the Zagros region (see Table 1). The largest group of endemic species belonged to the genus Astragalus, with 13 species, making it the most significant genus in terms of endemism. Fabaceae had the highest number of endemic species, highlighting its importance in the region's flora. Astragalus lignipes is particularly noteworthy. This species was first described from Fereydunshahr (Akhavan & Maassoumi 2020). Our study has confirmed the presence of A. lignipes in Hashtad Mountain, indicating that its distribution extends beyond the type locality. This finding is significant as it represents the first documentation of A. lignipes outside of its initial discovery site, enhancing our understanding of its range and ecological preferences.

Some notable endemics and rare species include Allium austroiranicum, A. minutiflorum, A. ubipetrense, Amygdalus haussknechtii, Astragalus chartostegius, A. inexpectatus, A. johannis, A. lignipes, A. murinus, Convolvulus urosepalus, Cousinia bachtiarica, Dionysia bazoftica, Stachys acerosa, and Zeravschania aucheri, highlighting the unique biodiversity of the region and emphasizing the need for focused conservation efforts.

Habitat

The plant species are distributed across different elevation zones. The main habitat types observed in these zones included rocky slopes, thorn-cushion, tall herbs, umbelliferous types, and mountain steppe (Table 1 and Fig. 6).

Fig. 6. Representative vegetation and topographical features of Hashtad Mountain: A, 3300-3500 m; B, 2800-3000 m; C, 3100-3200 m; D, 2900-3200 m.

Edible and medicinal plants

Wild harvesting of edible and medicinal plants by local people poses important threats to the flora of Hashtad Mountain. One of the most impacted species is *Allium stipitatum* (Mousir in Persian), which is heavily harvested for its bulbs. This intensive harvesting significantly reduces the population size in this area. Furthermore, some Lamiaceae species, such as *Thymus* spp., *Stachys* spp., and *Ziziphora* spp., are collected for culinary uses. Most other species are primarily harvested for their medicinal properties. The most commonly harvested species for their edible and medicinal uses include: Allium stipitatum, Artemisia haussknechtii, Ferula assa-foetida, Ferulago angulata, Echinophora sibthorpiana, Eryngium billardieri, Dorema aucheri, Ixiolirion tataricum, Prangos ferulacea, Thymus daenensis, Tanacetum kotschyi, Scutellaria multicaulis, Nepeta sessilifolia, Thymus carmanicus, and Ziziphora clinopodioides.

Endangered species and threat factors

Most endemic species in the Zagros region, including those on Hashtad Mountain, are critically endangered due to various factors such as limited Area of Occupancy (AOO), Extent of Occurrence (EOO), small population sizes, poor habitat quality, and issues with natural regeneration. Human activities, including overgrazing and habitat degradation, have further aggravated these conditions, leading to a decline in mature individuals and the deterioration of their natural habitats. Our field observations in Hashtad Mountain and other parts of Isfahan Province have identified several primary threats to plant species in the region. Global warming and prolonged droughts, driven by climate change, have reduced water availability and disrupted natural growing seasons, posing a serious risk to water-dependent species and upsetting the balance of the ecosystem. Additionally, human interference through land-use changes, such as converting pastures into agricultural land, has resulted in biodiversity loss as natural habitats are replaced by human-dominated landscapes. Infrastructure development, mainly road construction and mining for stone extraction, has destroyed and fragmented habitats, displacing plant species and degrading their environments. Overgrazing by livestock, which exceeds the carrying capacity of the rangelands, remains a critical threat, leading to severe degradation of plant communities, soil erosion, and increased vulnerability to invasive species.

DISCUSSION

The floristic study of Hashtad Mountain highlights a remarkable diversity of plant species, largely due to the mountain's complex topography and unique climatic conditions. When comparing the species diversity of Hashtad Mountain with other high-altitude regions in Iran, it is evident that these regions exhibit a similar level of species diversity. However, a more meaningful comparison arises when examining the similarities within key families and genera rather than focusing solely on species count. For instance, the genus Astragalus plays a significant role across several mountainous regions, including Hashtad Mountain, where it constitutes a significant portion of the flora. Astragalus is the largest genus in Iran's flora, with over 850 species, of which approximately 65% are endemic (Maassoumi 2005; Akhavan & al. 2019). On Hashtad Mountain, Astragalus accounts for over 80% of the Fabaceae family, with 21 out of the total 26 species belonging to this genus, reflecting patterns observed in regions like Hezar and Alvand Mountains (Rajaei & al. 2011; Dehshiri & al. 2016). Of the 26 Astragalus

species found in this area, 13 are endemic to Iran, emphasizing the mountain's favorable conditions for the genus's diversity (Bagheri & al. 2017). In Hezar Mountain, which hosts 208 species, the most dominant families are Asteraceae, Fabaceae, and Lamiaceae, similar to their importance on Hashtad Mountain. The presence of genera such as Astragalus and Nepeta in both regions indicates ecological parallels that support the growth of these plants. Meanwhile, in Oshtorankuh, Asteraceae and Fabaceae are among the most significant families, highlighting their importance in Iran's alpine regions (Dehshiri & Mahdavar 2016). Therefore, when comparing key families and genera like Astragalus and Fabaceae across these regions, Hashtad Mountain reveals deeper ecological similarities. These parallels highlight the mountain's crucial role in contributing to biodiversity and preserving endemic species in Iran's alpine zones.

The life form of plants is indicative of their adaptation to environmental conditions. The spectrum of life forms observed in the region indicates the presence of alpine vegetation, with hemicryptophytes representing the most abundant life form and phanerophytes the least abundant. This observation is consistent with the findings of the present study Archibold (1995) posits that the prevalence of hemicryptophytes in the region is indicative of a cold and mountainous climate. Conversely, in foothill areas and lower elevations, the percentage of phanerophytes increases, while hemicryptophytes decrease. This distribution of life forms highlights the ecological conditions of the alpine and sub-alpine zones of Hashtad Mountain.

Mountainous regions are known for their diverse habitats and extreme climatic conditions, which support numerous unique plant species. These species make the mountains particularly significant from a biodiversity standpoint. Despite the natural protection offered by their isolation and harsh conditions, these areas face a multitude of threats. Overgrazing, wild harvesting of edible and medicinal plants by local communities, and the utilization of underground resources, such as mining and road construction, are among the most significant threats to these regions. Field observations indicated that mining, road construction, and overgrazing were the most significant threats to the plant species in the study area. Figure 7 demonstrates the extent of mining and road construction activities in the region, highlighting the environmental pressures on the local flora. These human activities exacerbate the vulnerability of the unique plant species and their habitats.

Fig. 7. Mining and road construction activities in the Hashtad Mountain region, illustrating the environmental pressures on the local flora.

The findings highlight the necessity for focused conservation to preserve the biodiversity of the region. To preserve the biodiversity of Hashtad Mountain, immediate conservation measures such as establishing protected areas and regulating human activities are essential. Future research should focus on continuous monitoring of these ecosystems and developing sustainable management strategies to ensure the long-term protection of this unique natural heritage.

While there have been some floristic studies in Iran's high mountains, comprehensive research remains limited due to the challenging access to these areas. This study addresses this gap by providing detailed information on the endemic and endangered species in the Hashtad Mountain area, which will be valuable for future research and conservation efforts.

ACKNOWLEDGMENTS

The authors are grateful to the Natural Resources Research Section of the Isfahan Agricultural and Natural Resources Research and Education Center (AREEO), as well as the Research Institute of Forests and Rangelands of Iran (RIFR) for their support of this study. This paper is the result of a project titled "Floristic Study of Hashtad Mountain (Isfahan Province)" with number 12-38-09-043-01006-010163 conducted by the RIFR.

REFERENCES

- Akhavan, A., & Maassoumi, A.A. 2020: A new species of *Astragalus* section *Dissitiflori* (Fabaceae) from Iran; evidence from morphological and molecular data. -Iranian Journal of Botany 26(1): 06-15. DOI: 10.22092/ijb.2020.342147.1276
- Akhavan, A., Bagheri, A., & Maassoumi, A.A. 2019: Taxonomy of the Genus *Astragalus* L.(Fabaceae)
- in Isfahan Province. -Taxonomy and Biosystematics 11(39): 97-114. DOI: 10.22108/tbj.2020.123361.1114
- Amini Rad, M. 2020: A glance at Azadkuh, one of the high peaks of Central Alborz with unique plant diversity and its environmental hazards. -Iran Nature 4(6): 93-100.
 - DOI: 10.22092/irn.2020.120806
- Amini Rad, M., & Pahlevani, A. H. 2023: Mishineh-Marg Mt., one of the highest mountains in the east of Central Alborz with diverse and rich flora. -Iran Nature 7(6): 103-115.

DOI: 10.22092/irn.2023.360724.1489

- Assadi, M., Maassoumi, A.A., Khatamsaz, M. & Mozaffarian, V. (Eds.) (1988-2023) Flora of Iran, vols. 1-183. -Research Institute of Forests and Rangelands Publications, Tehran.
- Bagheri, A., Ghahremaninejad, F., Maassoumi, A.A., Rahiminejad, M.R. & Blattner, F.R. 2017: Nine new species of the species-rich genus Astragalus (Leguminosae). -Novon 25: 266-281. DOI: 10.3417/2016010
- Dehshiri, M.M. & Mahdavar, H. 2016: Alpine flora of some part of Oshtorankuh, Lorestan province.
 -Taxonomy and Biosystematics 8(26): 29-40.
 DOI: 10.22108/tbj.2016.20973
- Dehshiri, M.M., Safikhani, K. & Mostafavi, H. 2016: Alpine flora of some part of Alvand Moumtain, Hamadan province. -Iranian Journal of Plant Biology 8(30): 89-104.
 DOI: 10.22108/ijpb.2016.21122
- Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T.,
- Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H. M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyes, R., Chowdhury, R.R., Shin, Y.J., Visseren-Hamakers, I., Willis, K.J., & Zayas, C. N. 2019: Pervasive human-driven decline of life on Earth points to the need for transformative change. -Science, 366(6471), eaax3100. DOI: 10.1126/science.aax310
- Fritsch, R.M. & Abbasi, M. 2013: A taxonomic review of Allium subg. Melanocrommyum in Iran. -IPK Gatersleben. 244 pp.
- Jafari, S.M., Zarre, S., Alavipanah, S.K., & Ghahremaninejad, F. 2014: Exploring the generality of associations between plant functional traits: evidence within ecological groups along an altitudinal gradient in Hyrcanian forest. -Plant Species Biology 29(3): E31-E39. DOI: 10.1111/1442-1984.12026
- Jafari, S.M., Zarre, S., Alavipanah, S.K. & Ghahremaninejad, F. 2015: Functional turnover from lowland to montane forests: evidence from the Hyrcanian forest in northern Iran. –iForest -Biogeosciences and Forestry 8(3): 359. DOI: 10.3832/ifor1002-008
- Körner, C. 2003: Alpine plant life: Functional plant ecology of high mountain ecosystems. -Springer-Verlag, Heidelberg, 349 p.

DOI: 10.1007/978-3-030-59538-8

Maassoumi, A.A. 2022: A checklist of Astragalus in the world: new grouping, new changes, and additional species with augmented data. - Research Institute of Forests and Rangelands, 1-563.

Mahmoodi, M., Ghahremaninejad, F. & Maassoumi, A.A. 2022: Diversity of vascular plants in Damirli Mountains (Zanjan Province, NW of Iran). Rostaniha 23(1): 1-131.

DOI: 10.22092/bot.j.iran.2022.356130.1274

- Moghanloo, L., Ghahremaninejad, F., Bidarlord, M. & Noraste Nia, A. 2023: Diversity and distribution of endemic & threatened plant species in the Sorkhabad protected area, Zanjan, NW Iran and identification of the biodiversity hotspots in the area. -Natura Croatica 32(1): 17-34. DOI: 10.20302/NC.2023.32.2
- Noroozi, J., Akhani, H., & Breckle, S.W. 2008: Biodiversity and phytogeography of the alpine flora of Iran. -Biodiversity and Conservation 17(3): 493-521.
 DOI: 10.1007/s10531-007-9246-7

Noroozi, J., Moser, D., & Essl, F. 2016: Diversity,

- distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. -Alpine Botany 126: 1-9. DOI: 10.1007/s00035-015-0160-4
- Noroozi, J., Talebi, A., Doostmohammadi, M. & Bagheri, A. 2020: The Zagros mountain range.
 Plant Biogeography and Vegetation of High Mountains of Central and South-West Asia: 185-214. DOI: 10.1007/978-3-030-45212-4_6
- Noroozi, J., Willner, W., Pauli, H., & Grabherr, G. 2014: Phytosociology and ecology of the highalpine to subnival scree vegetation of N and NW Iran (Alborz and Azerbaijan Mts.). -Applied Vegetation Science 17(1): 142-161. DOI: 10.1111/avsc.12031
- Pairanj, J., Ebrahimi, A., Tarnain, F. &Hassanzadeh, M. 2011: Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord.
 Taxonomy and Biosystematics 3(7): 1-10.
 DOI: 20.1001.1.20088906.1390.3.7.2.8
- Podlech, D. & Zarre, S. 2013: A taxonomic revision of the genus Astragalus L. (Leguminosae) in the Old World. Vols. 1-3. -Naturhistorisches Museum, Wien, 2439 pp.
- POWO. 2023: Plants of the World Online. Available from: http://powo.science.kew.org. (Accessed April to Jun 2024).
- Rajaei, P., Maassoumi, A.A., Mozaffarian, V., Nejad Sattari, T. & Pourmirzaei, A. 2011: Alpine flora of Hezar mountain (SE Iran). -Rostaniha 12(2): 111-127. DOI: 10.22092/botany.2012.101405

- Raunkiaer, C. 1934: The life forms of plants and statistical plant geography. Clarendon Press, Oxford, 632 pp.
- Razbani, E., Ghahremaninejad, F. & Joharchi, M.R. 2023: A floristic study of the northern slope of Bahar Mountain Region, North Khorasan Province, Iran. -Taxonomy and Biosystematics 15(1): 19-38.

DOI: 10.22108/tbj. 2023.137452.1230

- Rechinger, K.H. (Ed.) 1963-2015: Flora Iranica. vols. 1-181. -Akademische Druck- U. Verlagsanstalt, Graz.
- White, F., & Léonard, J. 1991: Phytogeographical links between Africa and Southwest Asia. -Flora et Vegetatio Mundi 9: 229-246.
- Zohary, M. 1973: Geobotanical foundations of the Middle East. -Gustav Fischer Verlag, Stuttgart, 765 pp.

Table 1. List of plant species collected in Hashtad Mountain, including their families, life forms, chorotypes, voucher specimens in SFAHAN herbarium, and habitat types.

Iranian endemics are marked by a single asterisk (*) and Zagros endemics are marked by a double asterisk (**). Habitat types are indicated as follows: Rocky Slopes (RS), Thorn-Cushion (TC), Tall Herbs and Umbelliferous (TU), and Mountain Steppe (MS).

No.	Taxon	Life form	Chorotype	Habitat types	Voucher specimens			
	Alliaceae							
1	Allium austroiranicum R.M.Fritsch*	Ge	IT	MS, RS	18247			
2	Allium longivaginatum Wendelbo*	Ge	IT	RS	18322			
3	Allium minutiflorum Regel*	Ge	IT	MS	18333			
4	Allium stipitatum Regel	Ge	IT, ES	RS, TH	18334			
5	Allium ubipetrense R.M.Fritsch*	Ge	IT	MS, RS	18335			
	Apiaceae							
6	Astrodaucus persicus (Boiss.) Drude*	He	IT	TU	18286			
7	Bunium caroides (Boiss.) Hausskn. ex Bornm	Ge	IT	MS	18257			
8	Dorema aucheri Boiss.*	He	IT	TU	18336			
9	Echinophora sibthorpiana Guss.	He	IT, ES	MS	1291			
10	Eryngium billardieri F. Delaroche	He	IT, ES	TU	18292			
11	Ferula assa-foetida L.*	He	IT	TU	18337			
12	Ferula haussknechtii H.Wolff ex Rech.f.	He	IT	TU	18338			
13	Ferulago angulata (Schltdl.) Boiss.	He	IT	TU	18339			
14	Ferulago contracta Boiss. & Hausskn.*	He	IT	TU	18182			
15	Leutea petiolaris (DC.) M. Pimen.*	He	IT	TU	18340			
16	Pimpinella kotschyana Boiss.	He	IT, ES, M	MS	18341			
17	Pimpinella tragium Vill.	He	IT, ES, M	MS	18216			
18	Prangos ferulacea (L.) Lindl.	He	IT, M	TU	18236			
19	Prangos uloptera DC.	He	IT	TU	18226			
20	Rhabdosciadium straussii Hausskn. ex Bornm.*	He	IT	TU	18342			
21	Smyrniopsis aucheri Boiss.	He	IT	TU	18233			
22	Zeravschania aucheri (Boiss.) M. Pimen.*	He	IT	TU	18264			
	A	sphodelace	ae					
23	Eremurus persicus (Jaub. & Spach) Boiss.	Ge	IT	TU	18343			
24	Eremurus spectabilis M.B.	Ge	IT, ES	TU	18207			
	Asteraceae							
25	Anthemis lorestanica Iranshahr**	Th	IT	MS	18222			
26	Artemisia haussknechtii Boiss.	He	IT	RS	18265			
27	Artemisia persica Boiss.	Ch	IT	MS	18268			
28	Centaurea aucheri (DC.) Wagenitz	He	IT	MS	1255			
29	Centaurea luristanica Rech.f.**	He	IT	MS	18232			
30	Cirsium bracteosum DC.	He	IT	TU	18270			

31	Cousinia bachtiarica Boiss. & Hausskn.**	He	IT	MS	18344				
32	Cousinia multiloba DC.	He	IT	MS	18272				
33	Echinops ritrodes Bunge	He	IT	MS	18278				
34	Helichrysum oligocephalum DC.*	Ch	IT	MS	18295				
35	Iranecio paucilobus (DC.) B.Nord.	He	IT	TU	18258				
36	Jurinea eriobasis DC.*	He	IT	MS	18345				
37	Jurinea meda Bornm.**	He	IT	MS, RS	18279				
38	Jurinea prasinophylla Rech.f.**	He	IT	MS	1307				
39	Lactuca polyclada Boiss.*	He	IT	MS	18346				
40	Lactuca serriola L.	He	Mult	TU	18213				
41	Pentanema multicaule Boiss.*	He	IT	MS	18267				
42	Phagnalon persicum Boiss.*	He	IT	RS	18194				
43	Psychrogeton amorphoglossus (Boiss.) Novopokr.	He	IT	RS	18214				
44	Scariola orientalis (Boiss.) Soják	He	IT	MS	18261				
45	Scorzonera ramosissima DC.	He	IT	MS	18290				
46	Serratula latifolia Boiss.	He	IT	TU	18282				
47	Tanacetum kotschyi (Boiss.) Grierson	He	IT	RS	18187				
48	Tanacetum persicum (Boiss.) Mozaffarian	He	IT	RS	18347				
49	Tanacetum polycephalum Schultz-Bip.	He	IT	MS	18193				
50	Tragopogon bakhtiaricus Rech.f.**	He	IT	MS	18254				
51	Tragopogon vvedenskyi M. Pop. Ex. Pavlov	He	IT	MS	18308				
	Boraginaceaea								
52	Arnebia euchroma (Royle) Johnst.	He	IT	MS	18348				
53	Lappula sessiliflora (Boiss.) Gürke	Th	IT	MS	18318				
54	Nonea persica Boiss.	He	IT	MS	18319				
55	Onosma kotschyi Boiss.*	He	IT	MS	18252				
56	Solenanthus circinnatus Ledeb.	He	IT	TU, MS	18298				
	Br	assicacea	ae						
57	Aethionema stenopterum Boiss.	He	IT, ES	MS	1327				
58	Aethionema fimbriatum Boiss.	He	IT, ES	MS	18217				
59	Alyssum bracteatum Boiss. & Bushe	He	IT	MS	18241				
60	Alyssum szovitsianum Fisch. & C.A.Mey.	Th	IT, ES	MS	18208				
61	Aubrieta parviflora Boiss.	He	IT	RS	18249				
62	Chalcanthus renifolius (Boiss. & Hohen.) Boiss.	He	IT	MS	18289				
63	Conringia perfoliata (C.A.Mey.) N.Busch	Th	IT, ES, M	MS	18349				
64	Fibigia macrocarpa (Boiss.) Boiss.	He	IT	TU	18350				
65	Fibigia suffruticosa (Vent.) Sweet	He	IT	MS	18221				
66	Graellsia saxifragifolia (DC.) Boiss.	He	IT	RS	1288				
67	Lepidium buschianum Al-Shehbaz*	He	IT	MS	18205				

68	Matthiola chenopodiifolia Fisch. & C.A.Mey.	Th	IT	MS	18351
69	Matthiola flavida Boiss.	He	IT	MS	18210
70	Noccaea perfoliata (L.) Al-shahbaz	Th	IT, ES, SS	MS	18197
71	Peltaria angustifolia DC.	Th	IT	MS	18243
72	Physoptychis gnaphalodes (DC.) Boiss.	He	IT, ES	MS	18215
	Can	ipanulac	ceae		
73	Asyneuma persicum (A.DC.) Bornm.	He	IT	TU	18212
74	Asyneuma virgatum (Labill.) Bornm.	He	IT, ES	TU	18198
	Cary	ophylla	ceae		
75	Arenaria persica Boiss.**	Ch	IT	RS	18181
76	Cerastium dichotomum L.	Th	Mult	MS	18238
77	Cerastium inflatum Link ex Desf.	Th	IT, ES	MS	18352
78	Dianthus orientalis Adams	He	IT	TC	18285
79	Gypsophila pallida Stapf	He	IT	MS	18353
80	Gypsophila polyclada Fenzl ex Boiss.	He	IT	MS	18354
81	Gypsophila virgata Boiss.*	Ch	IT	MS	18269
82	Mesostemma kotschyanum (Fenzl ex Boiss.) Vved.	He	IT	MS	18296
83	Minuartia lineata Bornm.	He	IT	MS	18209
84	Silene aucheriana Boiss.	He	IT, ES	MS	18231
85	Silene chlorifolia SM.	He	IT, ES	MS	18196
86	Silene microphylla Boiss.*	He	IT	MS	1298
	Cher	nopodia	ceae		
87	Chenopodium foliosum Asch.	Th	IT	MS	1256
88	Noaea mucronata (Forssk.) Asch. & Schweinf.	Ch	IT, ES, M	RS	18262
	Co	lchicace	ae		
89	Colchicum kotschyi Boiss.	Ge	IT,ES	MS	18302
	Con	volvulac	eae		
90	Convolvulus urosepalus Pau.**	Ch	IT	MS	18190
	Cr	assulace	ae		
91	Pseudosedum multicaule (Boiss. & Buhse) Boriss.	Не	IT	RS	18204
92	Rosularia elymaitica (Boiss. & Hausskn.) Berger	He	IT, ES	RS	18355
	C	yperacea	ne		
93	Carex microglochin Wahlenb	Ge	Mult	MS	18330
94	Carex stenophylla Wahlenb	Ge	IT, ES, M	MS	18306
95	Eleocharis uniglumis (Link) Schult.	He	Cosm	MS	18331
	Di	psacacea	ae		
96	Cephalaria microcephala Boiss.	He	IT, ES	TU	1258
97	Cephalaria hirsuta Stapf	He	IT	TU	18200
98	Pterocephalus canus Coult. ex DC.	He	IT	TU	18297

	Eup	ohorbiace	eae		
99	Euphorbia aucheri Boiss.	He	IT	MS	18276
100	Euphorbia cheiradenia Boiss. & Hohen.	He	IT	MS	1317
101	Euphorbia polycaulis Boiss. &Hohen.*	He	IT	MS	18356
102	Euphorbia hebecarpa Boiss.*	He	IT	MS	18277
103	Euphorbia virgata Waldst. & Kit.	He	IT, ES, M	MS	18288
	I	abaceae			
104	Astragalus aegobromus Boiss. & Hohen.	He	IT	MS	18320
105	Astragalus andalanicus Boiss. & Hausskn.	Ch	IT	TC	18357
106	Astragalus apricus Bunge	He	IT	MC	18358
107	Astragalus brachycalyx Fisch.	Ch	IT	TC	18359
108	Astragalus chartostegius Boiss. & Hausskn.*	Ch	IT	TC	18360
109	Astragalus chrysotrichus Boiss.**	He	IT	MS	18323
110	Astragalus curvirostris Boiss.*	He	IT, ES, SS	MS	18305
111	Astragalus cyclophyllon Beck*	He	IT	MS	18361
112	Astragalus inexpectatus Maassoumi & Podlech**	He	IT	MS	18362
113	Astragalus johannis Boiss.**	Ch	IT	MS	18363
114	Astragalus kirrindicus Boiss. & Noe	He	IT	MS	18283
115	Astragalus lignipes Akhavan & Maassoumi**	He	IT	MS	18325
116	Astragalus macrourus Hohen.*	He	IT	MS	18316
117	Astragalus microphysa Boiss.**	Ch	IT	TC	18195
118	Astragalus multijugus DC.*	He	IT	MS	18242
119	Astragalus murinus Boiss.**	Ch	IT	TC	1290
120	Astragalus patrius Maassoumi*	He	IT, ES	MS	18324
121	Astragalus ptychophyllus Boiss.**	Th	IT	TC	18364
122	Astragalus rhodosemius Boiss. & Hausskn.*	Ch	IT	TC	18365
123	Astragalus susianus Boiss.**	Ch	IT	TC	18366
124	Astragalus verus Olivier	Ch	IT	TC	18367
125	Coronilla varia L.	He	IT, ES, M	TU	18199
126	Onobrychis cornuta (L.) Desv.	Ch	IT, ES	TC	18189
127	Ononis spinosa L.	He	IT, ES, M	MS	1257
128	Oxytropis chrysocarpa Boiss.*	He	IT	MS	18311
129	Vicia ciceroidea Boiss.	He	IT, ES	MS	18203
	Ge	eraniacea	ne		
130	Biebersteinia multifida DC.	Ge	IT	MS	18368
131	Erodium cicutarium (L.) L'Hér.	Th	IT, ES, M	MS	18245
132	Geranium rotundifolium L.	Th	IT, ES, M	MS	18255
133	Geranium tuberosum L.	Ge	IT, ES, M	MS	18218

Hyacinthaceae							
134	Bellevalia sp.	Ge	-	MS	18369		
135	Muscari neglectum Guss. ex Ten.	Ge	IT, ES, M	MS	18300		
136	Ornithogalum orthophyllum Ten.	Ge	Mult	MS	18370		
	Ixi	ioliriacea	e				
137	Ixiolirion tataricum (Pall.) Herb.	Ge	Mult	MS	18371		
	L	amiaceae					
138	Lallemantia royleana (Benth. in wall.) Benth. In DC.	Th	IT, ES	MS	18372		
139	Lamium amplexicaule L.	Th	IT, ES, M	MS	18240		
140	Marrubium astracanicum Jacq.	He	IT, ES	MS	18201		
141	Nepeta laxiflora Benth. in DC.**	He	IT	RS	18373		
142	Nepeta sessilifolia Bunge*	He	IT	RS	18281		
143	Phlomis anisodonta Boiss.*	He	IT	MS	18271		
144	Phlomis olivieri Benth.	Ch	IT	MS	18260		
145	Salvia atropatana Bunge	He	IT	MS	18287		
146	Salvia hydrangea DC. ex Benth.	He	IT, M	MS	18223		
147	Salvia reuterana Boiss.	He	IT	MS	18225		
148	Scutellaria multicaulis Boiss.*	He	IT	MS	18259		
149	Scutellaria nepetifolia Benth.in DC.*	He	IT	MS	18374		
150	Stachys acerosa Boiss.*	Ch	IT	TC	18246		
151	Stachys aucheri Benth.in DC.**	Ch	IT	MS	1325		
152	Stachys benthamiana Boiss.*	He	IT	MS	18224		
153	Stachys lavandulifolia Vahl	He	IT, ES	MS	18251		
154	Stachys pilifera Benth. in DC.**	He	IT	MS	18244		
155	Thymus carmanicus Jalas	Ch	IT	MS, RS	18180		
156	Thymus daenensis Celak.*	He	IT	MS	18184		
157	Ziziphora clinopodioides Lam.	Ch	IT, ES	MS	18266		
	I	Liliaceae					
158	Fritillaria imperialis L.	Ge	IT	TU	18309		
159	Fritillaria persica L.	Ge	IT	MS	18310		
160	Gagea gageoides (Zucc.) Vved.	Ge	IT, ES	MS	18375		
161	Tulipa stylosa Fisch.	Ge	IT	MS	18312		
Orobanchaceae							
162	Orobanche aegyptiaca Pers.	Th	IT, ES, M	MS	18327		
	Papaveraceae						
163	Papaver armeniacum (L.) DC.	Th	IT	MS	1269		
Plumbaginaceae							
164	Acantholimon aspadanum Bunge**	Ch	IT	TC	18376		
165	Acantholimon hohenackeri (Jaub. & Spach) Boiss.	Ch	IT	TC	18377		

		Poaceae			
166	Arrhenatherum kotschyi Boiss.	Ge	IT	MS	18378
167	Bromus danthoniae Trin.	Th	IT	MS	1813
168	Bromus tectorum L.	Th	Cosm	MS	18228
169	Bromus tomentellus Boiss.	He	IT, ES, M	MS	18186
170	Dactylis glomerata L.	He	Cosm	MS	18280
171	Elymus hispidus (Opiz) Melderis	He	Mult	MS	18299
172	Piptatherum holciforme (M.Bieb.) Hack	He	IT, M	MS	1300
173	Poa bulbosa L.	Ge	Mult	MS	18229
174	Psathyrostachys fragilis (Boiss.) Nevski	Ge	IT	MS	18294
175	Stipa arabica Trin. & Rupr.	He	IT	MS	1308
176	Taeniatherum caput-medusae (L.) Nevski	Th	Mult	MS	18220
	Pod	lophyllac	eae		
177	Leontice leontopetalum L.	Ge	IT, M, SS	MS	18301
	P	rimulace	ae		
178	Dionysia bazoftica Jamzad**	Ch	IT	RS	18379
	Ra	nunculac	eae		
179	Ceratocephala falcata (L.) Pers.	Th	IT, ES, M	MS	18315
180	Delphinium saniculifolium Boiss.*	He	IT	TU	18211
181	Ficaria kochii (Ledeb.) Iranshahr & Rech.f.	Ge	IT	MS	18313
182	Ranunculus aucheri Boiss.	Th	IT, M	MS	18304
183	Ranunculus macropodoides Briq.	He	IT	MS	18239
184	Thalictrum isopyroides C.A. Mey.	He	IT, ES	MS, TU	18227
	R	hamnace	ae		
185	Rhamnus cornifolia Boiss. & Hohen.	Ch	IT	RS	18183
186	Rhamnus persica Boiss.	Ph	IT	RS	6429
		Rosaceae			
187	Amygdalus haussknechtii (C.K.Schneid.) Bornm.*	Ph	IT	RS	18380
188	Cerasus brachypetala Boiss.	Ph	IT	RS	18250
189	Cerasus microcarpa (C.A.Mey.) Boiss.	Ph	IT	RS	1294
190	Cotoneaster persicus Pojark.*	Ph	IT	RS	18230
191	Rosa elymaitica Boiss. & Hausskn.	Ph	IT, ES	RS	18293
192	Rosa pulverulenta M.B.	Ph	IT, ES, M	RS	1283
	I	Rubiacea	e		
193	Asperula brachyantha Boiss.*	Ch	IT	MS	18291
194	Asperula glomerata (M.Bieb.) Griseb.	Ch	IT	MS	18191
195	Cruciata taurica (Pall. ex Willd.) Ehrend.	He	IT, ES, M	MS	18234
196	Rubia albicaulis Boiss.*	Ch	IT	MS	18185

Santalaceae								
197	Thesium kotschyanum Boiss.	Th	IT, SS	MS	18253			
	Scrophulariaceae							
198	Bungea trifida (Vahl) C.A.Mey.	Не	IT, ES	MS	18192			
199	Linaria fastigiata Chav.	He	IT	MS	1259			
200	Linaria pyramidalis (Vent.) F.G. Dietr.	Не	IT, ES	MS, TU	18381			
201	Odontites aucheri Boiss.	Th	IT, ES	MS	18275			
202	Scrophularia nervosa Benth.	He	IT	MS	1814			
203	Scrophularia sanguinea Grau	He	IT	MS	18274			
204	Scrophularia variegate M.B	He	IT, ES	MS	18273			
205	Verbascum speciosum Schrad.	He	IT, ES	TU	18382			
206	Veronica orientalis Mill.	He	IT, ES, M	MS	18237			
Solanaceae								
207	Hyoscyamus niger L.	Не	Mult	MS	18303			
		Thymeleacea	ie					
208	Daphne mucronata Royle	Ph	IT, SS	RS	18284			
		Urticaceae						
209	Parietaria judaica L.	Ch	Mult	RS	18256			
Valerianaceae								
210	Valeriana sisymbrifolia Vahl	Не	IT	RS	18188			
Violaceae								
211	Viola pachyrhizaBoiss. et Hohen	He	IT	MS	18317			
Woodsiaceae								
212	Cystopteris fragilis (L.) Bernh.	He	Cosm	RS	18326			