IRANIAN JOURNAL OF BOTANY 26 (2), 2020 DOI: 10.22092/ijb.2020.351698.1296

BIODIVERSITY OF DIATOMS IN THE KASHKAN RIVER IN THE ZAGROS MOUNTAINS, WESTERN IRAN

S. Safiallah, S. Saadatmand, S. Kheiri & A. Iranbakhsh

Received 2020. 08. 31; accepted for publication 2020. 11. 30

Safiallah, S., Saadatmand, S., Kheiri, S. & Iranbakhsh, A. 2020. 12. 30: Biodiversity of diatoms in the Kashkan river in the Zagros mountains, western Iran. *-Iran. J. Bot.* 26 (2): 141-161. Tehran.

Iran is a country that serves as the spot for diverse landscapes and aquatic ecosystems. Zagros Mountains, as one of its main ranges and the important segment of Alpine-Himalayan orogenic system are known as the biodervisity hotspots for plants and animals worldwide. Despite the numerous rivers flowing in the area, little survey has been conducted about the diatom flora of its rivers. Diatoms are the most diverse microalgae that have great contribution to the primary production in the aquatic ecosystems. Due to importance of diatoms in the aquatic ecosystems and the ecological and geological importance of the Zagros in the world, we aim to study the diatom flora in the Kashkan River flowing in the Zagros Mountains. In this research, 48 epipelic and epilithic samples were collected along the Kashkan River in Spring 2019. A total of 91 taxa was identified from which four species were recorded as new for the diatom flora of Iran. Furthermore, identification of 10 taxa are provisional which are designated as cf., when finalized, these may also be recognized as new records. Meanwhile, twenty unidentified taxa which are marked as sp., are potetilly new species, in need of furthere investigations. These novel taxa are highlights and prominence of this study. Our results serves as a baseline for the diatoms biodiversity in the Zagros Mountain.

Somayyeh Safiallah, Sara Saadatmand (correspondence< sara.saadatmand2@gmail.com>), Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. -Somayyeh Kheiri, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.- Alireza Iranbakhsh, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Key words: Zagros Mountains; Diatom; biodiversity; Kashkan River; Iran

جدید برای فلور دیاتومه ایران تشخیص داده شدند. شناسایی مقدماتی ده گونه نشان میدهد که آنها احتمالا رکوردهای جدیدی برای فلور ایران هستند و بهصورت .cf در لیست مشخص شدهاند. هم چنین بیست گونه ناشناخته که بهصورت .sp نشان داده شدهاند، میتوانند بالقوه گونههای جدید باشند. این گزارشهای جدید اهمیت این مطالعه را دو چندان میکند. این پژوهش، اطلاعات پایه در خصوص شناسایی و تنوع دیاتومهها در منطقه زاگرس به شمار می آید.

INTRODUCTION

The diatoms (Bacillariophyta) comprise the most diverse group of microalgae with a unique siliceous cell wall morphology which is their most distinguishing characteristic. They are the most important primary producers that live in all kinds of aquatic ecosystems. Diatoms have been used as the environmental indicators of water quality due to their sensitivity to changes in pH, conductivity, salinity and trophic status in water (Cox, 1996). Therefore, the population and diversity of diatoms are influenced by different criteria such as physical, chemical and biological composition and the geographical features of their ecosystem (Vanormelingen & al. 2008).

Studies have shown that geographical factors play an important role in limiting the dispersal of certain species of diatom to specific regions and data support the endemism of diatom species to particular geographical regions. So far, Asia has been introduced as a continent possessing the highest endemic diatom genera (Vanormelingen & al. 2007; Kocioleck 2018; Kiroly & al. 2007).

Iran is an important country in Asia with diverse ecosystems and geological formations. There has already been conducted much research on the endemism of its plants, animals (Linnaei 1758; Ziaie 1996; Noroozi & al. 2019b ; Kiani & al. 2017) and its unique geology (Stoklin & Nabavi 1973; Nogole-Sadat 1993; Aghanabati 2004). However, there have been few studies conducted on diatom diversity throughout the country. Research on the diatom assemblage and its ecology has been pioneered by mostly foreign researchers (Loffler 1956; Hirano 1973; Moghadam 1975; Wasylik 1975; Compe're 1981; Hulburt & al. 1981). The diatom work has received more attention in recent decades (Snyder & al. 2001; Nejadsattari 2005a; Jamalo & al. 2006; Witkowski & al. 2007; Atazadeh & al. 2007; Zarei-Darki 2011a; Zarei-Darki 2011 b; Soltanpour-Gargari & al. 2011; Shams & al. 2012; Cheraghpour & al. 2013; Kheiri & al. 2013; Pourgholam & al. 2014; Mohebbi & al. 2016; Panahy Mirzahasanlou & al. 2018; Ahmadi Musaabad & al., 2019; Kheiri & al. 2018a; Kheiri & al. 2018b; Kheiri 2019). So far, only two endemic species, Nitzschia

iranica Compe're and Achnanthes iranensis Moghadam have been recorded from Iran (Compe're 1981; Moghadam 1975). According to the global biodiversity, Zagros Mountains as a part of Irano-Anatolian plate are one of the 34 biodiversity hotspots in the world (Noroozi & al. 2018). The ranges are extending northwest-southeast Iran. They are a part of Alp-Himalayan belt formed by the closure of the Neo-Tethyan ocean and the collision of a variety of continental plates as African, Arabian, Indian and Eurasian plates (Hatzfeld & al. 2010; Mohajjel & Fergusson 2013; Massaro & al. 2019). The Zagros Mountains are the source for many springs and rivers. The Lorestan basin is one of the largest sub basins of the Zagros.

There has been a pioneer work on diatom diversity in the Lorestan basin (Kheiri & al. 2018b). However, due to the presence of many rivers in the region, our understanding about diatom diversity in the Zagros is very poor. The Kashkan River is one of the longest rivers of Lorestan province which originates from its source in the Zagros Mountains and with four major perennial tributaries as Doab, Khorramabad, Jehlool, and Madianrud, it drains one-third of the province (Mostafaei 2014). We selected the Kashkan River to study its diatom assembelage as it is a very important river in the Lorestan province used as drinking water and in agriculture. No study has been conducted in the area for the diatom flora yet. The unique geology of the region as part of the Zagros makes the study more outstanding. This research aimed to study the composition of epipelic and epilithic diatoms and survey the distribution of the species in the Kashkan River basin.

MATERIALS AND METHODS

Study area

The Kashkan River is one of the longest rivers of Iran and with a length of approximately 900 km, it has a drainage area of 9.236 km² in the Lorestan province. The river is flowing along the Zagros Mountains from an altitude of about 3140 m a.s.l. (Mostafaei 2014). It is one of the principal tributaries of the Karkheh River (in the north of Khuzestan province) that terminates to

the Persian Gulf .The Horroud and Aleshtar streams are two main streams that join together to form the Kashkan River in the mountains of Aleshtar. The river receives sewage of the villages and the industrialmunicipal wastewater of the cities of Aleshtar, Poledokhtar,Jogolvandi, koohdasht, khoramabad in its way (Mostafaei 2014; Negaresh & al. 2011). The basin is one of the most important center for agriculture and a drinking source for the residents of the Lorestan Province.

Geologically, Kashkan rocks are composed of red colored siltstone, sandstone and conglomerate and the Kashkan formation belongs to the Paleocene-middle Eocene (Yusefi-Yeganeh & al. 2011).

Four sampling stations were selected along the Kashkan River (fig. 3, table 1). The sites are located in the centeral-western part of the basin with the elevation range of 983-1030 m. Except site 4 which is located inside the village, the other sites are located along the Khoramabad- Koohdasht road near villages. All sites were close to agricultural lands. Waste plastic bottles and oil containers were present in the second site, "near the Kashkan bridge". This place is close to tourists camps and there were some pumps around for irrigating the agricultural fields (figs 1-2).

Sampling method

48 samples were collected from the surface of rocks and mud along the Kashkan River in Spring 2019. The temperature in Spring is optimum for the diatom growth and diversity (Zhang & al. 2019) and we sampled the periphytic diatoms from the substrates of the river in May. It is assumed that the high preceptation improves the water quality and we collected the samples after the rainfall for the best possible water quality.

For collecting epipelic samples, a plastic syringe (with a capacity of 60 ml and diameter of 29.1 mm) with the barrel cut off at the needle adapter end was inserted into the substrate. Most epilithic samples were collected from submerged rocks at the depth of 10 to 20cm. A brush was used to collect diatoms at the area of 10cm×10cm on the surface of the rock (Kheiri & al. 2013). Samples were preserved in 4% formaldehyde and transported to the laboratory. The samples were treated with hydrogen peroxide 30 $/(H_2O_2)$ and hydrocloric acid 37 /(HCl) for the removal of the organic material and carbonates respectively. After repeated washing with the distilled water, the slides were mounted by Naphrax (Taylor & al. 2007).

Observation of the diatom slides were done using

an Olympus BX53 equipped with a DP72 camera. Diatoms were identified according to known references (Rabenhorst 1853; Reichardt 1999; Reichardt & Lange-Bertalot 1991;Patrick & Rimer 1966; Krammer 1997a; Krammer 1997b; Krammer 2002; Krammer & Lange-Bertalot 1991a; Krammer & Lange-Bertalot 1991b; Krammer & Lange-Bertalot 1986; Krammer & Lange-Bertalot 1988; Lange-Bertalot 2001; Lange-Bertalot & Krammer 1989; Potapova & Ponder 2004; Morales & Vis 2007; Levkov 2009; Hofmann & al. 2011; Bey and Ector 2013a; Bey and Ector 2013b; Kheiri & al. 2018a; Liu & al. 2019). We used Image J Software for measuring diatoms (Schneider & al., 2012).

Physicochemical Analysis

Water samples were collected from the sampling sites in May 2019. The samples for chemical analysis were collected into the bottles with the volume of 1500cc and transported chilled to the laboratory of AZMA Company (Tehran, Iran). Temperature was measured *in situ*.Water chemistry analyses included pH, specific conductivity, total dissolved solids, total suspended Solids, turbidity, ammonium, nitrate, nitrite, total nitrogen, organic nitrogen and total phosphate following APHA (2017).

RESULTS

A total of 91 taxa belonging to 26 genera, 15 families and three classes were identified from 48 epipelic and epilithic samples at four stations along the Kashkan River. Among these taxa, *Navicula caterva* Hohn & Hellermann, *Ulnaria contracta* (Østrup) E. A. Morales & M.L.Vis, *Nitzschia paleaeformis* Hustedt and *Hantzschia abundans* Lange-Bertalot were identified as new records for the diatom flora of Iran. Furthermore, three other taxa seemed new to the diatom flora of Iran, but their identification was not final. Here, we represent the preliminary identification as follows: *Ulnaria* cf. *rhombus* D.M.Williams, *Cymbopleura* cf. *anglica* (Lagersted) Krammer, *Gomphonema* cf. *cymbelliclinum* E.Reichardt & Lange-Bertalot.

Meanwhile, Achnanthidium sp.1, Achnanthidium sp.2, Nitzschia sp., Tryblionella sp., Gomphonella sp.1, Gomphonella sp.2, Gomphonella sp.3, Gomphonella sp.4, Eunotia sp., Encyonopsis sp., Gomphonema sp.1, Gomphonema sp.2, Gomphonema sp.3, Gyrosigma sp., Navicula sp.1, Navicula sp.2, Navicula sp.3, Craticula sp., Surirella sp., and Diatoma sp. were the taxa that remained unidentified which are designated as sp. here. Furthere investiagation may reveal them as new taxa.

144 Biodiversity of diatoms in the kashkan River, Iran

Figs. 1-2. Images of different stations of the Kashkan River in Lorestan province.

Fig. 3. Map of the Kashkan River (Lorestan province), sampling sites are marked with numbered black dots.

Site	Elevation (m)	Latitude and Longitude	Location and site description
1	1030	33° 32′ 44″ N 47° 56′ 26″ E	Khoramabad(Sarabdore), near the village of Kaleho, Shahivand, 35 Km from Koohdasht.
2	1015	33° 35′ 22″ N 47° 52′ 50″ E	Khoramabad(Sarabdore), near the Kashkan Bridge, 45 km from Koohdasht.
3	980	33° 33′ 40″ N 47° 55′ 31″ E	Khoramabad(Sarabdore), near the village of Amirabad, 55 km from Koohdasht.
4	983	33° 35′ 16″ N 47° 52′ 55″ E	Khoramabad(Sarabdore), in the Gandabe village, 65 km from Koohdasht.

Table 1. Sampling sites along the Kashkan River.

Ten species showed somewhat different characteristics from the known species. Therefore, the most similar taxa were chosen for naming the species as cf. taxa. Twenty species did not match with the references and were identified at the genus level as sp. species in the Kashkan River. The taxonomic references used for the identification and morphometric characterisctics for the specimens are given for each species (table 2).

Morphological types of the diatoms included as follows: 1. Centric diatoms, represented by the families of Melosiraceae and stephanodiscaceae with one genus (Melosira) and one species for the former and two genera and two species for the latter (genera: Cyclotella & Pantocsekiella), 2. Symmetrical biraphid diatoms comprising the three families, Amphipleuraceae with one genus (Amphipleura), Stauroneidaceae with one genus (Craticula), Naviculaceae with three genera (Navicula, Gyrosigma, Caloneis), 3. Asymmetrical biraphid group including the families of Catenulaceae (genus: Amphora), Cymbellaceae (genera: Cymbella, Cymbopleura), Cymbellales inceratae sedis (genus: Gomphonella), and Gomphonemataceae (genera: Encyonema, Encyonopsis, Gomphonema, Reimeria), 4. Monoraphid taxa consisisting the two families of Achnanthidiaceae (genus: *Achnanthidium*) and Cocconeidaceae (genus: Cocconeis), 5. Araphid group comprising the two Families of Tabellariaceae (genus: Diatoma) and Ulnariaceae (genus: Ulnaria), 5. group Nitzschioid consisting of the family Bacillariaceae with four genera (Denticula. Hantzschia, Nitzschia, Tryblionella), 6. Surirelloid group represented by the family Surirellaceae with one genus (Surirella) and 7. Eunotioid taxa belonging to the family Eunotiaceae with the genus Eunotia.

The most diverse group was asymmetrical biraphid with 8 genera and 20 species. Symmetrical biraphid with 17 species had the second rank in diversity. Eunotioid with one genus and one species was the least diverse group in the samples.

Among the new record taxa, *Ulnaria contracta* and *Navicula caterva* appeared in all sampling sites. *Nitzschia paleaeformis* occurred in sites 2 to 4. *Hantzschia abundans* was only found in site 1.

The most dominant genera in the sites were *Navicula* (15 species) and *Nitzschia* (11 species) with the richest species diversity in the Kashkan River. Other genera which were commonly found in both epipelic and epilithic assembelage included *Gomphonema* (9 species), *Cymbella* (8 species), *Achnanthidium* (5 species), *Surirella* (4 species), *Ulnaria* (4 species), *Diatoma* (3 species) and *Cocconeis* (3 species).

The species that were present in two stations along the river included ¹/₄ of the flora and comprised the taxa of Craticula cf. accomoda (Hustedt) D.G.Mann, Cyclotella meneghiniana Kützing, Cymbella tumida (Brébisson) Van Heurck, Diatoma sp., Encyonopsis microcephala (Grunow) Krammer, Encyonopsis subminuta Krammer & E.Reichardt, Gomphonema cf. Kützing. Gomphonema dichotomum cf. cymbelliclinum, Gomphonema sp.1, Melosira varians C. Agardh, Navicula cf. antonii Lange-Bertalot, Navicula cryptotenella Lange-Bertalot, Navicula erifuga sensu Bey and Ector 2013, Navicula gregaria Donkin, Navicula trivialis Lange-Bertalot, Navicula sp.3, Nitzschia cf. desertorum Hustedt, Surirella angusta Kützing and Ulnaria acus (Kützing) Aboal (table 2).

The species which were observed in only one station also included 1/4 of the flora. They comprised the species of Achnanthidium sp.2, Amphipleura pellucida (Kützing) Kützing, Caloneis bacillum (Grunow) Cleve, Cyclotella atomus Hustedt, Denticula kuetzingii Encyonema lange-bertalotii Krammer Grunow. Encyonopsis morphotype1, sp., Eunotia sp., Gomphonema micropus Kützing, Gomphonema productum (Grunow) Lange-Bertalot & E.Reichardt, Gyrosigma sp., Hantzschia abundans, Navicula radiosa Kützing, Nitzschia cf. acicularis (Kützing) W.Smith, Nitzschia flexa Schumann, Nitzschia recta Hantzsch ex Rabenhorst, Nitzschia sp., Pantocsekiella iranica Nejadsattari, Kheiri, Spaulding & Edlund, Reimeria sinuata (W.Gregory) Kociolek & Stoermer, Surirella librile (Ehrenberg) Ehrenberg, Surirella sp. and Ulnaria cf. rhombus (table 3).

The remainder of the species which contributed to approximately half of the whole flora, were the species with high percentage of occurrunce found in three to four stations along the river (table 3).

A few species were only observed in one substrate. They included *Amphipleura pellucida* (Kützing) Kützing (observed in site 1), *Denticula kuetzingii* Grunow (observed in site 4), *Tryblionella* sp. (observed in sites 2,3,4), *Eunotia* sp.(observed in site 2), and *Encyonema lange-bertalotii* Krammer morphotype1 (observed in site 2). *Pantocsekillea iranica* only occurred as Epilithic species (table 2).

Physicochemical data

Physicochemical parameters observed in the water of the Kashkan River during the sampling time are shown in table 3. Based on the analysis, temperature had an average value of 25°C in the sampling sites and did not show much variation along the river. It only tended to be a little low in site 3 (21°C) .pH was basic in the sampling sites with slight increase toward downstream of the river. The concentrations of TDS, TSS and EC did not vary much along the sites. Nutrients such as nitrite was almost constant in sampling sites. The concentration of organic nitrogen had an ascending trend toward downstream stations and its highest value was detected in station 3. Other nutrients such as total nitrate and total phosphate increased from upstream sites to downstream sites. As the altitude decreased along the stations from station 1 to station 4, the value for turbidity increased.

Turbidity was the only parameter among the physicochemical factors that exceeded the standard permissible limits of WHO in the River. (table 3).

DISCUSSION

Despite Iran's large area and its numerous and diverse aquatic ecosystems, the knowledge about

diatom diversity is poor throughout the country (Kheiri & al. 2018a). Survey on diatom assemblage in the Zagros basin, as the second important mountainous range in Iran, draws a significant attention. The present study is performed to increase our understanding about the regional patterns of diatom diversity in the centralwestern part of the Kashkan River basin, located in the Lorestan province and is a part of the Zagros basin. Comparison of diversity of Kashkan River with the diatom flora of Marbareh River, one of the main tributaries of the Sezar River in the Lorestan Province (Kheiri & al. 2018b) presents some similar taxa. Species such as Cymbella excisa Kützing, Cymbella lange-bertalotii Krammer, Diatoma moniliformis (Kützing) D.M.Williams, Diatoma vulgaris Bory, Ecyonema minutum (Hilse) D.G.Mann, Gomphonema micropus, Navicula capitatoradiata H.Germain ex Gasse, Nitzschia dissipata (Kützing) Rabenhorst, Nitzschia linearis W.Smith, Reimeria sinuata, Surirella angusta and Ulnaria ulna (Nitzsch) Compère were found in both rivers. Comparing the diatom flora of Kashkan River with the diatom diversity of the other aquatic ecosystems in Iran shows some species common and widespread throughout Iran. These species include Cyclotella meneghiniana Kützing, Melosira varians, Achnanthidium minutissimum (Kützing) Czarnecki, Surirella angusta, Caloneis bacillum, Diatoma moniliformis, Cocconeis lineata Ehrenberg, Cocconeis placentula var. euglypta (Ehrenberg) Grunow, Cocconeis placentula Ehrenberg, Ulnaria ulna, Navicula radiosa, Navicula capitatoradiata, Navicula gregaria Donkin, Denticula kuetzingii, Cymbella tumida, Nitzschia linearis, Nitzschia recta, Nitzschia palea (Kützing) W.Smith, Nitzschia dissipata, Amphora pediculus (Kützing) Grunow and Gomphonema parvulum (Kützing) Kützing (Hirano 1973; Moghadam 1975; Wasylik 1975; Afsharzadeh 2003; Nejadsattari 2005a. Nejadsattari & al. 2005b: Witkowski & al. 2007: Zarei-Darki 2009a: Zarei-Darki 2009b: Zarei-Darki 2011a: Panahy-Mirzahasanlou & al. 2018; Kheiri & al. 2018a). The unique species in the Kashkan River with a wide distribution in the sites included Cymbopleura cf. anglica, Gomphonema cf. cymbelliclinum, Navicula caterva, Nitzschia paleaeformis, Ulnaria contracta. Hantzschia abundans and Ulnaria cf. rhombus had a limited distribution in the river and were observed in only one site.

More than 50% of the species had a wide distribution along the river and were present in three or four sampling sites. The species, occurred in only one station accounted for the ¹/₄ of the flora. Very few species present in the Kashkan River preferred only one substrate and appeared as epipelic or epilithic taxa.

148 Biodiversity of diatoms in the kashkan River, Iran

Table 2. List of the identified taxa, their description and their presence in the sampling sites and the substrate. L stands for valve length, W for valve width, S for stria number in 10 μ m, F for fibulae in 10 μ m, D for diameter and C for costa number in 10 μ m. +: present. -:not noted. New records are marked by asterisk.

Taxon	Figures	ID reference	Dimension	Stations	Epipelic	Epilithic
Bacillariophyceae						
Achnanthidiaceae						
Achnanthidium gracillimum	Fig. 14	Hofmann & al. (2011)	L:18.82 µm			
(F.Meister) Lange-Bertalot			W: 2.45 μm	1,2,3,4	+	+
			S:20			
Achnanthidium minutissimum	Figs	Lange-Bertalot & Krammer	L:9.91-13.73 µm			
(Kützing) Czarnecki	12-13	(1989)	W: 2-2.27 μm	2,3,4	+	+
		Krammer & Lange-Bertalot				
		(1991b); Hofmann & al. (2011)				
Achnanthidium cf. pyrenaicum	Fig.15	Hofmann & al. (2011);	L:13.39 µm			
(Hustedt) H.Kobayasi			W: 3.30 µm	1,3,4	+	+
Achnanthidium sp.1	Figs	Krammer & Lange-Bertalot	L:14.13-16.79 µm			
	10-11	(1991b); Hofmann & al. (2011)	W: 3-3.18 µm	2,3,4	+	+
Achnanthidium sp.2	Fig.16	Krammer & Lange-Bertalot	L: 11.45 µm			
		(1991b); ;Potapova & Ponader	W: 2.91 µm	3	+	+
		(2004)				
Amphipleuraceae						
Amphipleura pellucida	Fig.18	Hofmann & al. (2011)	L:84.18 µm			
(Kützing) Kützing			W: 8.18 μm	1	+	-
Bacillariaceae						
Denticula kuetzingii	Fig. 66	Krammer & Lange-Bertalot	L: 22.32 µm			
Grunow		(1988)	W: 4.39 µm	4	+	-
			F: 9			
*Hantzschia abundans	Fig. 68	Hofmann & al. (2011)	L: 37.63 µm			
Lange-Bertalot			W: 5.97 μm	1	+	+
			F: 5			
Nitzschia cf.	Fig. 78	Krammer & Lange-Bertalot	L: 46.79 µm			
acicularis		(1991a); Hofmann & al. (2011)	W: 4 µm	2	+	+
(Kützing) W.Smith						
Nitzschia cf. desertorum	Fig. 82	Krammer & Lange-Bertalot	L: 20.85 µm			
Hustedt		(1991a)	W: 3.29 μm	3, 4	+	+
			F: 18			
Nitzschia dissipata	Figs	Krammer & Lange-Bertalot	L: 20.12-35 µm			
(Kützing) Rabenhorst	83-84	(1988)	W: 3.05-3.90 μm	1, 2, 3, 4	+	+
			F: 11			
Nitzschia dissipata var. media	Fig	Krammer & Lange-Bertalot	L: 25-49.39 µm			
(Hantzsch) Grunow	85-86	(1988)	W: 3.78-4.51 μm	2, 3, 4	+	+
			F: 8-9			
Nitzschia flexa	Figs	Krammer & Lange-Bertalot	L: 104.18-			
Schumann	72-73	(1991a)	122.45 μm	1	+	+
			W: 4.08-4.09 µm			
			F: 8-11			
Nitzschia heufleriana	Fig. 74	Krammer & Lange-Bertalot	L: 119.45 µm			
Grunow		(1991a);	W: 6 µm F:12	1, 2, 3	+	+
		Hofmann & al. (2011)				

Nitzschia linearis	Fig. 75	Krammer & Lange-Bertalot (1988	3) L: 82.27 μm			
W.Smith			W: 4.37 μm	1,2,3,4	+	+
			F: 10			
Nitzschia palea	Figs	Krammer & Lange-Bertalot (1991	a); L: 17.74- 42.52 μm			
(Kützing) W.Smith	79-80-81	Hofmann & al.(2011)	W: 3.71- 4.39 μm	1,2,3,4	+	+
			F: 12-13			
*Nitzschia paleaeformis	Fig. 77	Hofmann & al. (2011)	L: 56.12 µm			
paleaeformis Hustedt			W: 3.64 μm	2,3,4	+	+
			F: 12			
Nitzschia recta	Fig. 76	Krammer & Lange-Bertalot (1988	3) L: 75.73 μm			
Hantzsch ex Rabenhorst			W: 5.67 μm	2	+	+
			F: 8			
Nitzschia sp.	Fig. 65	Hofmann & al. (2011)	L: 27.26 µm			
			W: 4.02 μm	2	+	+
			F: 12			
<i>Tryblionella</i> sp.	Fig. 67	Krammer & Lange-Bertalot (1988	B) L: 37.70 μm			
			W: 5.94 μm	2,3,4	+	-
~			S: 16			
Catenulaceae						
Amphora pediculus	Fig. 124	Krammer & Lange-Bertalot (19	86); L: 9.32 μm			
(Kützing) Grunow		Levkov (2009)	W: 2.45 μm	2,3,4	+	+
~			S: 8			
Cocconeidaceae						
Cocconeis lineata	Figs	Krammer & Lange-Bertalot (1991	b) L: 13.70-25.39 μm			
Ehrenberg	32-33		W: 7.95-13.70 μm	1,2,3,4	+	+
			S:15 -17			
Cocconeis placentula	Figs	Hofmann & al. (2011)	L: 22.91-32.32 μm	104		
var. <i>euglypta</i>	34-35		W: 12.88-17.86 μm	1,2,4	+	+
(Enrenberg) Grunow	F : 26	W 0.1 D 1.1.(1001	S:20			
Cocconeis placentula	F1g. 36	Krammer & Lange-Bertalot (1991	b) L: 13. /9 μ m	1024		
Enrenberg			W: 7.67 μm	1,2,3,4	+	+
<u> </u>			S: 20			
Cymbellaceae	Γ.	W (2002)	L 20 10 20 05			
Cymbella affinis var.	Figs	Krammer (2002)	L: 28.19- 29.95 μm	1 2 2 4		
neoprocera W Silaa	98-99		W: 8.4-7.85 μm	1,2,3,4	+	+
w.Silva	F' (0	V (2002)	S: 11-12			
Cymbella compacta	F1g. 69	Krammer (2002)	L: 33.13 μm	1 2 2 4		
Østrup			W: 11.45 μm	1,2,3,4	+	+
Court all a court a	E'	<i>V</i>	5: 15 L : 15 71 02 74			
Cymbella excisa	Figs	Krammer (2002)	L: 15./1-25./4 µm	1 2 2 4		
Kutzing	95-90		W: 0.03-7.12 μm	1,2,3,4	+	+
<i>a i i i i</i>	F : 0.1	W (2002)	S: 12-14			
Cymbella exigua	F1g. 94	Krammer (2002)	L: 29.16 µm	1024		
Krammer			W: 8.43μm	1,2,3,4	+	+
		(2002)	S: 11			
Cymbella cf. excisiformis	Fig. 97 K	rammer (2002)	L: 29.59 μm			
Krammer			w: 0.21 μm 1,2,3	,4 +		+
Constantin 1 1 1 1	E: 70 Y	(2002)	5: 12 L: 29:10			
Cymbella lange-bertalotii	Fig. /0 K	rammer (2002)	L: 38.19 μm	х л		
Krammer			w: 9.64 μm 1,2,3	5,4 +		+
			5:11			

150 Biodiversity of diatoms in the kashkan River, Iran

Cymbella tumida (Brébisson) Van Heurck	Fig. 71						
(Brébisson) Van Heurck		Krammer (2002)		L: 44.58 µm			
~ /	-			W: 14.46 µm	1,3	+	+
				S: 12			
Cymbopleura cf. anglica	Fig	Krammer (2003)		L: 27 27 µm			
(Lagerstedt) Krammer	105	(2000)		W: 8.93 µm	123	+	+
(Lagersteat) Krammer	105			S: 14	1,2,5	1	
Cymbollalos incoratao sodis				5.14			
Complementaries inter atac setus	Eice	Vrommor & Longo Dort	$a_{1at} (1096)$	L : 16 24 10 70 um	1224		
(Usersensens) Dahardsant	rigs	Lange-Bert	$\frac{100}{1980};$	L. 10.34 19.79 µm	1,2,3,4		
(Hornemann) Rabenhorst	106-	Hofmann & al. $(2011);$	Rabenhorst	W: 5.16- 5./8 μm			
	107	(1853)		S: 9-10		+	+
Gomphonella sp.1	Fig.	Rabenhorst (1853)		L: 15.73 µm			
	113			W: 2.83µm	1,2,3	+	+
				S: 11			
Gomphonella sp.2	Fig.	Rabenhorst (1853)		L: 30.55 µm			
	120			W: 3.58 µm	1,2,3,4	+	+
				S: 10			
Gomphonella sp.3	Fig.	Rabenhorst (1853)		L: 24.86 µm			
1 1.2	121	· · · · /		W: 3.49 µm	1,2,4	+	+
				S: 10	, ,		
Gomphonella sp 4	Figs	Rabenhorst (1853)		L: 16 34 19 79			
Gomphonena sp.4	110-	Rubblindist (1055)		um	1234	+	+
	111			μm W: 5.16- 5.78	1,2,3,4		Т
	111			W. 5.10- 5.78			
				μπ S: 9-10			
Eunotiaceae							
Eunotia sp.	Fig. 31	Hofmann & al. (2011)		L: 17.45 µm			
				W: 1.82 μm	2	+	-
Gomphonemataceae							
Encvonema minutum	Figs	Krammer (1997a)		L: 14.72- 12.02 µm			
(Hilse) D G Mann	91-92			W: 5 28- 4 79um	1234	+	+
(Thise) D.G.Main	<i>)</i> 1 <i>)</i> 2			S: 16	1,2,3,1		I
Encvonema lange-hertalotii	Fig. 03	Krammer (1997a)		L: 15 34 um			
Krammer	1 lg. 95	Krammer (1997a)		W: 5.62um	2		
morphotupo 1				w. 5.02µm	2	т	-
	E	V		5.10			
(Distant) D C Mann	F1g8	Krammer (1997a)		L: $17.07 - 26.22 \mu m$	124		
(Bleisch) D.G.Mann	87-88			w: 5.52- 6. 38µm S: 13-15	1,3,4	+	+
Encvonema ventricosum	Figs	Krammer (1997a)		L: 16.44- 21.10 µm			
(C Agardh) Grunow	89-90			W: 6 14- 7 12um	1234	+	+
(Chigaran) Granow	07 70			S: 14-16	1,2,3,1		I
Encyonopsis microcephala	Fig. 103	Krammer (1997h)	L: 13.86 µm	~			
(Grunow) Krammer	116.105	Frankiner (17770)	W· 3.01um	31	±		+
(Orunow) Krannici			\$.24	5,4	Т		Т
	Figs	Krammer (1997h)	L: 12 53-15	33 um			
Encyonopsis minuta	1 150	Manniner (17770)	W· 3 01_ 3 3		±		+
Encyonopsis minuta Krammer & E Reichardt	$101_{-}102$		··· . J.01- J.2	μm 1,2,3	+		т
Encyonopsis minuta Krammer & E.Reichardt	101-102		5.22.25				
Encyonopsis minuta Krammer & E.Reichardt	101-102	H.C. (2011)	S:23-25				
Encyonopsis minuta Krammer & E.Reichardt Encyonopsis sp.	101-102 Fig. 100	Hofmann (2011)	S:23-25 L: 17.64 μm	- 			

Table 2. Continued.						
Encyonopsis subminuta	Fig. 104	Krammer (1997b)	L: 10.84 µm			
Krammer & E.Reichardt			W: 2.89µm	2,4	+	-
			S:25			
Gomphonema cf.	Figs	Krammer &	L: 31.83- 34.95 um			
dichotomum	116-117	Lange-Bertalot	W: 4.59 um	1.3	+	+
Kützing	110 117	(1986)	S: 10	1,0		·
Rutzing		(1)00)	5.10			
Gomphonema cf.	Fig. 114	Hafmann(2011);	L: 9.82 µm			
cymbelliclinum	C	Krammer & Lange-	W: 4.04 μm	1,3	+	+
E.Reichardt & Lange-		Bertalot (1986)	S: 5	7-		
Bertalot		2010100 (1900)	515			
Gomphonema micropus	Fig. 123	Hofmann & al	L: 31 83 um			
Kützing	118.120	(2011)	W: 5.60 µm	2	+	+
Rutzing		(2011)	\$. 11	2	,	1
Comphonema namulum	Figs	Vrommor & Longo	L: 16.05 20.40 um			
(Viitzing) Viitzing	108 100	Registral of (1086)	L. $10.95 - 20.40 \mu m$	1 2 2 4		
(Kutzing) Kutzing	108-109	Benalot (1980)	w:4.92- 5.90 µm	1,2,3,4	+	+
	F: 100	TLC 0 1	S: 13-10			
Gomphonema productum	Fig. 122	Hofmann & al.	L: 30 µm	2		
(Grunow) Lange-Bertalot		(2011)	W: 4.77 μm	3	+	+
& E.Reichardt			S: 11			
Gomphonema tergestinum	Fig. 112	Krammer & Lange-	L: 18.06 µm			
(Grunow) Fricke		Bertalot (1986)	W: 6.27µm	1,2,3	+	+
			S: 12			
Gomphonema sp.1	Fig. 115	Hofmann & al.	L: 48.90 µm			
		(2011)	W: 6.42 μm	1,3	+	+
			S: 10			
Gomphonema sp.2	Fig. 118	Hofmann & al.	L: 30.83 µm			
		(2011)	W: 4.31 µm	1,2,3,4	+	+
			S: 14			
Gomphonema sp.3	Fig. 119	Hofmann & al.	L: 23.21 µm			
		(2011)	W: 3.30 µm	1,2,3,4	+	+
			S: 14			
Reimeria sinuata	Fig.37	Krammer & Lange-	L: 14.73 µm			
(W.Gregory) Kociolek	&	Bertalot (1986)	W: 4.43 µm	2	+	-
Stoermer			S: 11			
Naviculaceae						
Caloneis bacillum	Fig.	Krammer and	L: 31.64 µm			
(Grunow) Cleve	25	Lange-bertalot	W: 5.21 um	4	+	-
		(1986)	S: 20	•		
Gvrasigma sp	Fig	Hofmann & al	L: 73 07 µm			
Grosignia sp.	11g. 17	(2011)	W· 11.60 μm	4	+	-
	1/	(2011)	π. 11.00 μm	7	Т	-
Navicula cf. antonii	Fig 55	Lange_Bertalot	I · 12 µm			
Longo Portalat	1 lg. 55	(2001)	L. 12 μm	2.4		
Lange-Dentalot		(2001)	w. σ.σ μιι s. 16	∠,4	+	+
Neutrale have d'	Г.	Lanas Davi 1 (5. 10 L : 21.22			
Navicula broetzii	Figs	Lange-Bertalot	L: 31.22 μm	1024		
Lange-Bertalot & E.Reichar	ut 49-50	(2001)	w: 5.49 μm	1,2,3,4	+	+
			<u>S: 15</u>			
*Navicula caterva	Fig. 53	Hofmann & al.	L: 16.59 µm			
Hohn & Hellermann		(2011)	W: 4.76 μm	1,2,3,4	+	+
			S: 17			

152 Biodiversity of diatoms in the kashkan River, Iran

Table 2. Continued.							
Navicula capitatoradiata	Figs	Krammer & Lange	-Bertalot	L: 33.54- 34.88 µm	l		
H.Germain ex Gasse	57-58	(1986)		W: 6.59- 7.07 μm S: 15	1,2,3,4	+	+
Navicula cryptotenella	Figs	Lange-Bertalot (20	01);	L: 29.65-22.94 µm			
Lange-Bertalot	51-52	Hofmann & al. (20	11)	W: 5.12-4.24 μm	1,2,3,4	+	+
-				S: 15-16			
Navicula gregaria	Fig. 61	Krammer & Lange	-Bertalot	L: 25.40 µm			
Donkin		(1986); Lange-Ber	alot (2001)	W: 6.13 µm	1,2	+	+
				S: 14			
Navicula radiosa	Fig.44	Krammer & La	ange-Bertalot	L: 53.66 µm			
Kützing		(1991a); Hofmann	& al. (2011)	W: 10.12 µm	1	+	+
				S: 10			
Navicula sp.1	Fig. 56	Hofmann & al. (20	11)	L: 8.09 µm			
				W: 3.18 μm	1,2,3	+	+
Navicula sp.2	Fig. 45	Hofmann & al. (20	11)	L: 53.41 µm			
-	-	X		W: 8.41 μm	1	+	+
				S: 11			
Navicula sp.3	Fig. 62	Hofmann & al. (20	11)	L: 33.74 µm			
	-			W: 6.99 μm	2,3	+	+
				S: 14			
Navicula trivialis	Fig. 59			L: 33.62 µm			
Lange-Bertalot		Hofmann & al. (20	11)	W: 7.98 µm	2,4	+	+
				S: 14			
Navicula tripunctata	Fig. 46	Bey and Ector (201	.3a)	L: 42.88 µm			
sensu Bey and Ector 2013	3			W: 8.12 µm	2	+	+
				S: 11			
Navicula tripunctata	Fig.	Krammer & Lange	-Bertalot	L: 41.76-43.90 µm			
(O.F.Müller) Bory	47-48	(1986); Lange-Ber	alot (2001)	W: 7.56 µm	1,2,3,4	+	+
				S: 11			
Navicula erifuga	Fig. 60	Bey and Ector (201	3a)	L: 33.29 µm			
sensu Bey and Ector				W: 7.07 µm	2,3	+	+
2013				S: 14			
Navicula vandamii	Fig. 54	Bey and Ector (201	3a)	L: 20.49 µm			
Sensu Bey and Ector				W: 4.76 µm	1,2,3,4	+	+
2013				S: 16			
Stauroneidaceae							
Craticula cf. accomoda	Fig. 63 Ho	ofmann & al.	L: 20.36 µm				
(Hustedt) D.G.Mann	(20	011)	W: 5.70 μm	1,4	+	+	
Craticula sp.	Fig.64 H	lofmann & al.	L: 9.82 µm				
	(2	2011)	W: 3.73 μm	2,3,4	+	+	
Surirellaceae							
Surirella angusta	Figs K	frammer & Lange-	L: 28.16-28.2	21 μm			
Kützing	22-23 B	ertalot (1988)	W: 7.19-8.7	8 μm 1,3	+	+	
			F: 8				
Surirella lacrimula	Figs B	ey & Ector (2013b)	L: 19.09-24 µ	ım			
J.D.English	20-21		W: 10 µm	1,2,3,4	4 +	+	
			F: 8-9				

Surirella librile	Fig.19	Hofmann & al.	L: 74.63 µm	2			
(Ehrenberg) Ehrenberg		(2011)	W: 15.91 μm	2	+	+	
Suriralla sp	Fig. 24	Krammer & Lange	D: 10				
Surtretta sp.	1 Ig. 24	Retalot (1988)	W [·] 8 μm	2	+	+	
		Bertalot (1900)	F: 7	2			
Tabellariaceae							
Diatoma moniliformis	Figs	Krammer & Lange-	L: 14.97-29.82 µm				
(Kützing) D.M.Williams	28-29	Bertalot (1991b)	W: 3.68-4.42 µm	1,2,3,4	+	+	
			C: 7-9				
Diatoma sp.	Fig.30	Hofmann & al.	L: 14.48 µm				
		(2011)	W: 4.91 µm	2,4	+	+	
			C: 7				
Diatoma vulgaris	Figs	Krammer & Lange-	L: 29.95-47.48 µm				
Bory	26-27	Bertalot (1991b)	W: 10.96-11.04 μn	n 1,2,3,4	+	+	
			C: 6-8				
Ulnariaceae							
Ulnaria acus	Fig. 38	Krammer & Lange-	L: 87.81 µm				
(Kützing) Aboal		Bertalot (1991a)	W: 4.21 μm	1,4	+	+	
			S: 12				
Ulnaria biceps	Figs	Krammer & Lange-	L: 260 µm	1.0.0			
(Kützing) Compère	43	Bertalot (1991a)	W: 5.61 μm	1,2,3	+	+	
*Illuguig contugata	Ein	Maralaa & Via	S: 9				
"Unaria contracta (Østrup) E A Morales &	F1g.	(2007)	L: 192.48-103.30 µ W: 6.97 µm	1234	I		
(Østrup) E.A.Morates & M I. Vis	41-42	(2007)	w. 0.97 μm S: 10-12	1,2,3,4	Ŧ	Ŧ	
Ulnaria cf. rhomhus	Fig. 30	$\lim_{k \to 1} \frac{1}{(2019)}$	I : 101 29 um				
D M Williams	1 lg. 57	Liu & al. (2017)	W [•] 5 14 μm	3	+	+	
Divition			S: 13	5			
Ulnaria ulna	Fig.	Krammer & Lange-	L: 192.48-103.30 L	ım			<u> </u>
(Nitzsch) Compère	40	Bertalot (1991a)	W: 6.97 μm	1,2,3,4	+	+	
			S: 10-12				
Cosinodiscophyceae							
Melosiraceae							
Melosira varians	Fig. 8	Krammer & La	nge-Bertalot	D:17.13 µm			
C.Agardh		(1991a)			2,3	+	-
Mediophyceae							
Stephanodiscaceae							
Cyclotella atomus	Fig. 9	Krammer and	d Lange-Bertalot	D: 7.31 µm			
Hustedt		(1991a)		S: 10	2	+	+
Cyclotella meneghiniana	Figs	Krammer and	d Lange-Bertalot	D: 9.74-12.66 µm			
Kützing	4-5	(1991a)		S:9-11	3,4	+	-
Pantocsekiella iranica	Figs	Kheiri & al. (20)18a)	D:12.98-13.98 µm			
Nejadsattari, Kheiri,	6-7			S: 5	2	-	+
Spaulding & Edlund							

Figs 4-43. Light Micrographs. 4-5, Cyclotella meneghiniana; 6-7, Pantocsekiella iranica; 8, Melosira varians; 9, Cyclotella atomus;10-11, Achnanthidium sp.1; 12-13, Achnanthidium minutissimum; 14, Achnanthidium gracillimum; 15, Achnanthidium cf. pyrenaicum; 16, Achnanthidium sp.2; 17, Gyrosigma sp.; 18, Amphipleura pellucida; 19, Surirella librile; 20-21, Surirella lacrimula; 22-23, Surirella angusta; 24, Surirella sp.; 25, Caloneis bacillum; 26-27, Diatoma vulgaris; 28-29, Diatoma moniliformis; 30, Diatoma sp.; 31, Eunotia sp.; 32-33, Cocconeis lineata; 34-35, Cocconeis placentula var. euglypta; 36, Cocconeis placentula; 37, Reimeria sinuata; 38, Ulnaria acus; 39, Ulnaria cf. rhombus; 40, Ulnaria ulna; 41-42, Ulnaria contracta; 43, Ulnaria biceps. Scale bar 10µm.

Figs 44-86. Light Micrographs. 44, Navicula radiosa; 45, Navicula sp.₂; 46, Navicula tripunctata sensu Bey & Ector (2013); 47-48, Navicula tripunctata; 49-50, Navicula broetzii; 51-52, Navicula cryptotenella; 53, Navicula caterva; 54, Navicula vandamii sensu Bey & Ector (2013); 55, Navicula cf. antonii; 56, Navicula sp.₁; 57-58, Navicula capitatoradiata; 59, Navicula trivialis; 60, Navicula erifuga sensu Bey & Ector(2013); 61, Navicula gregaria; 62, Navicula sp.₃; 63, Craticula cf. accomoda; 64, Craticula sp.; 65, Nitzschia sp.; 66, Denticula kuetzingii; 67, Tryblionella sp.; 68, Hantzschia abundans; 69, Cymbella compacta; 70, Cymbella lange-bertalotii; 71, Cymbella tumida; 72-73, Nitzschia flexa; 74, Nitzschia heufleriana; 75, Nitzschia linearis; 76, Nitzschia recta; 77, Nitzschia paleaeformis; 78, Nitzschia cf. acicularis; 79-80-81, Nitzschia palea; 82, Nitzschia cf. desertorum; 83-84, Nitzschia dissipata; 85-86, Nitzschia dissipata var. media. Scale bar 10μm.

Figs 87-124. Light Micrographs.87-88, Encyonema silesiacum; 89-90, Encyonema ventricosum; 91-92, Encyonema minutum; 93 Encyonema lange-bertalotii morphotype1; 94, Cymbella exigua; 95-96, Cymbella excisa; 97, Cymbella cf. excisiformis; 98-99, Cymbella affinis var. neoprocera; 100, Encyonopsis sp.; 101-102, Encyonopsis minuta; 103, Encyonopsis microcephala; 104, Encyonopsis subminuta; 105, Cymbopleura cf. anglica; 106-107, Gomphonella olivacea; 108-109, Gomphonema parvulum; 110-111, Gomphonella sp.4; 112, Gomphonema tergestinum; 113, Gomphonella sp.1; 114, Gomphonema cf. cymbelliclinum; 115, Gomphonema sp.2; 121, Gomphonema cf. dichotomum; 118, Gomphonema sp.2; 119, Gomphonema sp.3; 120, Gomphonella sp.2; 121, Gomphonella sp.3; 122, Gomphonema productum; 123, Gomphonema micropus; 124, Amphora pediculus. Scale bar 10µm.

Physicochemical data did not show large variation among the sites. Based on the majority of the widespread species found in the sites along the river, it can be concluded that the sites do show a slight difference in diatom assemblage from upstream to downstream of the river. The follow-up work will be the multi-variate analysis of sites, species and water quality variables to demonstrate the detailed distribution of the species along the main environmetal gradients.

This study is the baseline for the diatom biodiversity in the Zagros Mountains. Regarding to the Zagros Mountains as one of the major hotspots of endemism and biodiversity for the biota in the world (Noroozi & al. 2019a; Noroozi & al. 2019b), we could predict many new records and new taxa from this area. The comparison of the environmental values in this study with the *Water Health Organization* (WHO)'s standards, presented that the water quality in the river is good. It is important to note that based on physiocochemical data, the Kashkan River is characterized as an oligotrophic (Rott & al. 1997; Lamparelli 2004; OECD 1984), alkaline and mesothermal river (Van dam & al. 1994; Low 1974). With regard to the studies about the water trophy, many species found in the Kashkan River are reported from

other oligotrophic aquatic ecosystems worldwide (Ramachandra & al. 2015; Venkatachalapathy & Karthikeyan 2015). Some olighotrophic species identified in the Kashkan River include *Achnanthidium minutissimum*, *Gomphonema parvulum*, *Nitzschia* palea, Cyclotella meneghiniana, Encyonema minutum, Melosira varians and Surirella angusta. They were also recorded as the elements of mesothermal rivers (Hall 1986).

 Table 3. Physicochemical parameters in the Kashkan River, Spring 2019.

 Stations of KashkanRiver

_							
Parameters	1	2	3	4	Range (minimum–maximum) and mean ± SE	Water Standar ds	References
EC μScm ⁻¹	330	350	337	331	$330-350 \\ 337\pm 0.49$	-	-
рН	8.23	8.25	8.30	8.49	8.23-8.49 8.31 ± 0.006	6.5-9.5	WHO, 2008
T °C	25	21	25	26	$\begin{array}{c} 21\text{-}26\\ 24.25\pm0.12\end{array}$	-	-
NTU mg L^{-1}	60	64.5	81.5	110	60-110 79 ± 1.22	Less than 5	WHO, 2008
TDS mg L^{-1}	237	243	233	232	232-243 236.25 ± 0.27	1000	WHO, 2008
TSS mg L^{-1}	68	56	70	84	56-84 69.5 ± 0.62	-	-
$\rm NH_4~mg~L^{-1}$	0.40	0.24	0.14	0.14	$\begin{array}{c} 0.14\text{-}0.4 \\ 0.23 \pm 0.006 \end{array}$	1.5	WHO, 2008
$NO_3 mg \; L^{-1}$	2	2.42	2.35	2.45	2-2.45 2.30 ± 0.01	50	WHO, 2008
$NO_2 mg \; L^{-1}$	0.02	0.02	0.019	0.018	$\begin{array}{c} 0.018 \text{-} 0.02 \\ 0.019 \pm 5.1 \end{array}$	3	WHO, 2008
T N mg L^{-1}	2.56	3.39	3.86	3.07	2.56-3.86 3.22 ± 0.02	-	-
Organic nitrogen mg L ⁻¹	0.13	0.71	1.36	0.46	$\begin{array}{c} 0.13\text{-}1.36 \\ 0.66 \pm 0.02 \end{array}$	-	-
$T \ PO_4 \ mg \ L^{-1}$	0.05	0.19	0.12	0.20	$\begin{array}{c} 0.05\text{-}0.2 \\ 0.14 \pm 0.003 \end{array}$	-	-

Factors higher than standards are marked with bold number.

S. Safiallah & al. 157

ACKNOWLEDGMENTS

The authors would like to thank the local people of Lorestan province for their help in the field work and Mr. Gh. Toulabi for his accompany in collecting samples. Special thanks to Dr. Patrick Kocioleck at the University of Colorado, USA for confirming the *Navicula* species' identification and Dr. Marina Potapova at Drexel University, USA for confirming the *Achnanthidium* species' identification. The authors are also grateful to the Research Institute of Forests and Rangeland in Tehran for providing the microscopy facilities.

REFERENCES

- Afsharzadeh, S., Nejad Sattari, T., Rahiminejad, M. & Ebrahiminejad, M. 2003: study of Alga flora in Zayandeh Rood River. -Iran. J. Biol. 14 (1): 32-45.
- Aghanabati, A. 2004: Geology of Iran. -GSI publication. Tehran. 606 pp. (in Pesian).
- Ahmadi Musaabad, L., Panahy Mirzahasanlou, J., Mahoodlu, M. G. & Bahlakeh, A. 2019: Diatom flora in three Springs of Golestan Province. -J. Phycological. Res. 3 (2): 432-442.
- Atazadeh, I., Sharifi, M. & Kelly, M. G. 2007: Evaluation of the trophic diatom index for assessing water quality in River Gharasou, western Iran. -Hydrobiologia. 589: 165-173.
- APHA. 2017: Standard methods for the examination of water and wastewater, 23rd edition. -American Public Health Association. Washington DC.
- Bey, M. Y. & Ector, L. 2013a: Atlas des diatomées des cours d'eau de la région Rhône-Alpes. Tome 4. Naviculacees: Naviculoidees-Vincennes, France: Agence Française pour la Biodiversité, 200 pp.
- Bey, M. Y. & Ector, L. 2013b: Atlas des diatomées des cours d'eau de la région Rhône-Alpes. Tome 6.
- Bacillariacees, Rhopalodiacees, Surirellacees-Vincennes, France: Agence Française pour la Biodiversité. 209 pp.
- Cheraghpour, J., Afsharzadeh, S., Sharifi, M., Ramezannejad Ghadi, A. & Masoudi, M. 2013: Phytoplankton diversity assessment of Gandoman wetland. Iran. J. Bot. 19 (2): 153-162.
- Compe're, P. 1981: Algues des deserts d'Iran. -Bulletin du Jardin botanique national de Belgique. 51: 3-40.
- Cox, E. J. 1996: Identification of freshwater diatoms from live material. -Chapman and Hall-London, 158pp.
- Hall, G. B. 1986: Plankton diatom assemblages of the Iowa Lakes Region. PhD Dissertation, Iowa State

University. -Ames, Iowa. Retrospective Theses and

Dissertations. 8005. Available from: https://lib. dr. iastate. edu/rtd/8005

- Hatzfeld, D., Authemayou, C., Van der Beek, P., Bellier, O., Lave, J., Oveisi, B., Tatar, M., Tavakoli, F., Walpersdorf, F. & Yamani Fard, F. 2010: The Kinematics of the Zagros Mountains (Iran). -Geological Society. London. Special publications. 330: 19-42.
- Hirano, M. 1973: Freshwater Algae from Mesopotamia. Contributions from the biological laboratory. -Kyoto University. 24: 105-119.
- Hofmann, G., Werum, M. & Lange-Bertalot, H. 2011: Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. -Koeltz Scientific Books. Königstein. 908 pp.
- Hulburt, E. M., Mahmoodian, F., Russell, M., Firuzeh, S., Lalezary, SH. & Amirhor, P. 1981: Attributes of plankton flora at Buscher, Iran. -Hydrobiologia. 79: 51-63.
- Jamalo, F., Nejadsattari, T. & Fallahian, F. 2006: Epilithon Diatoms of Jajrood River. Pajouhesh &Sazandegi Journal. 73: 2-11. (in Pesian).
- Kheiri, S., Nejadsattari, T., Asri, Y., Hamdi, S. M. M., Spaulding, S. & Edlund, M. B. 2013. *Cyclotella iranica* sp. nov. (Bacillariophyta: Coscinodiscophyceae), a new diatom from the Karaj River, Iran. -Phytotaxa. 104 (1): 35-43.
- Kheiri, S., Solak, C. M., Edlund, M. B., Spaulding, S., Nejadsattari, T., Asri, Y. & Hamdi, S. M. M. 2018a: Biodiversity of diatoms in the Karaj River in the central Alborz, Iran. -Diatom. Res. 33 (3): 355-380.
- Kheiri, S., Tavakoli, M., Oraghi Ardebili, Z. 2018b: Diatom flora of Marbareh River, Dez catchment, Lorestan, Iran. J. Plant. Res. (Iran. J. Biol.). 31 (3): 516-528. (in Persian).
- Kheiri, S. 2019: Diatom Diversity in the Spring and Spring-fed River of Tizab Region (Central Alborz), Iran. -J. Phycological. Res. 3 (2): 395-407.
- Kiani, M., Mohammadi, Sh., Babaei, A., Sefidkon, F., Naghavi, M. R., Saeidi, K., Jafari, H., Asghari, D. & Potter, D. 2017: Iran support a great share of biodiversity and floristic endemism for *Fritillaria* spp. (Liliaceae): A review. -Plant. Divers. 39 (5): 245-262.
- Kilroy, C., Biggs, B., & Vyverman, W. 2007: Rules for Macroorganisms Applied to Microorganisms: Patterns of Endemism in Benthic Freshwater Diatoms. -Oikos, 116 (4): 550-564

- Kocioleck, J. P. 2018: A worldwide listing and biogeography of freshwater diatom genera: a phylogenetic perspective. -Diatom. Res. 33 (4): 509-534.
- Krammer, K. 1997a: Die cymbelloiden Diatomeen.Eine Monographie der weltweit bekannten Taxa.Teil 1: Allgemeines und *Encyonema* Part. Vol. 36.Bibliotheca Diatomologica. 382 pp.
- Krammer, K. 1997b: *Die* cymbelloiden Diatomeen.
 Eine Monographie der weltweit bekannten Taxa.
 Teil 2: *Encyonema* Part, *Encyonopsis* und *Cymbellopsis*. Vol. 37. -Bibliotheca Diatomologica.
 469 pp.
- Krammer, K. 2002: Cymbella In: Diatoms of Europe, diatoms of the European inland waters and comparable habitants (Ed. by H. Lange-Bertalot) Vol. 3. -A. R. G. Gantner Verlag K. G. Ruggell. 584 pp.
- -& Lange-Bertalot, H. 1988: Bacillariophyceae, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Süßwasserflora von Mitteleuropa (Ed. by H. Ettl,J. Gerloff, H. Heynig, D. Mollenhauer), Vol. 2/2. -G. Fischer Verlag. Stuttgart & New York. 596 pp.
- & Lange-Bertalot, H. 1991a: Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Süßwasserflora von Mitteleuropa (Ed. by H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer), Vol. 2/3. -G. Fischer Verlag. Stuttgart & New York. 576 pp.
- -& Lange-Bertalot, H. 1991b: Bacillariophyceae, 4. Teil: Achnanthaceae. Kritische Erganzungenzu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis. In: Süßwasserflora von Mitteleuropa (Ed. by H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer). Vol. 2/4. -G. Fischer Verlag. Stuttgart & New York. 437 pp.
- -& Lange-Bertalot, H. 1986: Bacillariophyceae, 1. Teil: Naviculaceae. In: H. Ettl, J. Gerloff H. Heynig D. Mollenhaues (eds). Suswasserflora von Mitteleuropa Vol. 2/1. -Fischer Verlag. Stutgart and New York. 876pp.
- Lamparelli, M. C. 2004: Trophic Status in São Paulo State water bodies, evaluation of monitoring methodologies. São Paulo (BR). PhD Thesis. -Instituto de Biociências da Universidade de São Paulo.
- Lange-Bertalot, H. 2001: The genus *Navicula* sensu stricto: 10 genera separated from *Navicula* sensu lato Frustulia. In: Diatoms of Europe (Ed. by H. Lange-Bertalot) Vol. 2. -A. R. G. Gantner Verlag K. G., Ruggell. 526 pp.

- S. Safiallah & al. 159
- & Krammer, K. 1989: *Achnanthes* Eine Monographie der Gattung. Vol. 18. - Bibliotheca Diatomologica. 393 pp.
- Levkov, Z. 2009: Amphora sensu lato. In: H. Lange-Bertalot (ed.). Diatoms of Europe. Vol: 5-ARG. Gantner Verlag KG, Ruggell. 916pp.
- Linnaei, C. 1758: Systema naturae per regna tria naturae, secundum classes, Ordines, genera, Species cum characteribus, differentiis, Synonymis, locis. Tomas I. Editiodecima, re formata Laurentii Salvii. -Holmiae. 823 pp.
- Liu, B., Williams, D., Liu, O. & Yang, X. 2019: Three species of *Ulnaria* (Bacillariophyceae) from China, with reference to the valve central area and apices. -Diatom. Res. 34 (1): 49-65.
- Loffler, H. 1956: Beiträge zur Kenntnis der Iranischen Binnengewässer. I. Der Niriz-See und sein Einzugsgebiet. -Internationale Revue der Gesamten Hydrobiologie und Hydrographie. 44: 227-276.
- Lowe, R. L. 1974: Environmental requirements and pollution tolerance of freshwater diatoms. -Bowling Green State University.
- Massaro, L., Corradetti, A., Tramparulo, F. A., Vitale, F., Prinzi, E. P., Iannace, A., Parente, M., Invernizzi, Ch., Morsalnejad, D. & Mazzoli, S. 2019: Discrete Fracture Network Modelling in Triassic-Jurassic Carbonates of NW Lurestan, Zagros Fold-and-Thrust Belt, Iran. - Geosci. 9 (496): 1-24.
- Moghadam, F. 1975: Diatoms as indicator of pollution in Zayandeh River, Iran. -Proceedings of Academy of Natural Science of Philadelphia 127: 281-297.
- Mohajjel, M. & Fergusson, D. 2014: Jurassic to Cenozoic tectonics of the Zagros orogen in north western Iran. - Int. Geol. Rev. 56 (3): 263-287.
- Mohebbi, F., Riahi, H., Sheidaei, M. & Shariatmadari, Z. 2016: Phytoplankton of Aras dam reservoir (Iran): an attempt to assess water quality. - Iran. J. Fish. Sci. 15 (4) 1318-1336.
- Morales, E. A. & Vis, M. L. 2007: Epilithic diatoms (Bacillariophyceae) from cloud forest and alpine streams in Bolivia, South America. Proceedings of the Academy of Natural Sciences of Philadelphia 156: 123-155.
- Mostafaei, A. 2014: Spatial and Temporal Evaluation of water quality in the Kashkan River. J. Water. Sci. Res. 6 (1): 43-58.
- Negaresh, H., Tvousi, T. & Mehdi Nasab, M. 2011. Scrutiny flooding Severity of Kashkan river basin. J. Phys. Geogr. 4 (13): 49-58. (in Persian).

- Nejadsattari, T. 2005a: Diatom flora of Lake Neure, Iran. Diatom. Res. 20: 313-333.
- Nejadsattari, T., Noroozi, M. & Fallahi, M. 2005b: The composition and seasonal distribution of epiphytic algae in Anzali lagoon, Iran. -Cryptogam. Algol. 26 (4): 378- 398.
- Nogole-Sadat, M. A. A. & Almasian, M. 1993: Tectonic Map of Iran, Scal 1: 1000000. -Geological Survey of Iran.
- Noroozi, J., Talebi, A., Doost mohammadi, M., Runof, S. B., Linder, P. H. & Schneweiss, G. 2018: Hotspot within a global biodiversity hotspot-areas of endemism are associated with high montain ranges. -Sci. Rep. 8 (1): 1-10.
- -& Talebi, A., Doostmohammadi, M., Asgharpoor, Z. & Schnceweiss, G. M. 2019a: Endemic diversity and distribution of the Iranian vascular flora across phytogegraphyical regions. Biodiversity hotspots and areas of endemism. . -Sci. Rep. 9 (1): 1-12.
- -& J. Zare, G., Sherafati, M., Moser, D., Asgharpoor, Z. & Schnceweiss, G. M. 2019b: Pattern of endemism in Turkey. The meeting point of three global biodiversity hotspots, based on three divers families of vascular plants. -Front. Ecol. Environ. 7 (159): 1-12.
- OECD, 1984: Eutrophication of water, monitoring, assessment and control. -Organization for Economic Cooperation and Development. Paris, France. 154pp.
- Panahy-Mirzahasanlou, J., Nejadsattari, T., Ramezanpour, Z. Imanpour, N. J. & Asri, Y. 2018: The epilithic and epipelic diatom flora of the Balikhli River, northwest Iran. -Turk. J. Bot. 42: 518-532.
- Patrick, R. & Reimer, C. W. 1966: The Diatoms of United States. -Academy of Natural Sciences. Philadelphia. 688pp.
- Potapova, G. M. & ponder, K. C. 2004: Two common North American diatoms. *Achnanthidium rivular* sp. nov. and *A. deflexum* (Reimer) Kingston: morphology, ecology and comparison with related species. -Diatom. Res. 19 (1): 33-57.
- Pourgholam, R., Tahami, F. S. & Keihan-Sani, A. R. 2014: Seasonal variation of phytoplankton in the southern Caspian Sea (during 2010-2011). -J. Anim. Res. (Iran. J. Biol). 27: 307-318. (in Persian).
- Rabenhorst, G. L. 1853. Die Süsswasser-Diatomaceen (Bacillarien). Für Freunde der Mikroskopie. -Leipzig. 72pp.
- Ramachandra, T. V., Subash Chandran, M. D., Joshi, N. V., Karthick, B. & Mukri, V. D. 2015:

Ecohydrology of Lotic Systems in Uttara Kannada, Central Western Ghats, India. In: Ramkumar M., Kumaraswamy K., Mohanraj R. (eds) Environmental Management of River Basin Ecosystems. -Springer Earth System Sciences. Springer, Cham. pp: 621-665

- Reichardt, E. 1999: Zur Revision der Gattung Gomphonema. Die Arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum sowie gomphonemoide Diatomeen aus dem Oberoligozän in Böhmen. Vol. 8. -Iconogr. Diatomol. 203pp.
- & Lange-Bertalot, H. 1991: Taxonomische Revision des Artencomplexes um Gomphonema angustum-G. dichotomum-G. intricatum-G. vibrio und ahnliche Taxa (Bacillariophyceae).-Nova Hedwigia. 53(3-4): 519-544.
- Rott, E., Hofmann, G., Pall, K., Pfister, P. & Pipp, E. 1997: Indikationslisten für Auf- wuchsalgen. Teil 1: Saprobielle Indikation. -Bundesministerium für Land- und Forstwirt schaft. Wasserwirtschaftskataster,Wien. 73 pp.
- Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012: NIH Image to Image J: 25 years of image analysis. -Nat. Methods. 9 (7): 671-675.
- Shayan, N. & Dehestani, H. 2013: Calculations of Geometric Parameters and Investigations of its Geomorphological Changes Pattern in Kashkan River. -Environ. Erosion. Res. J. 2 (4): 21-34. (in Persian).
- Soltanpour-Gargari, A., Lodenius, M. & Hinz, F. 2011: Epilithic diatoms (Bacillariophyceae) from streams in Ramsar, Iran. -Acta. Bot. Croat. 70 (2): 167-190.
- Stoklin, J. & Nabavi, M. H. 1973: Tectonic map of Iran 1: 2500000. -Geological Survey of Iran.
- Snyder, J. A., Wasylik, K., Fritz, S. C. & Wright, H. E. 2001: Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. -The Holocene 11 (6): 737-745.
- Taylor, J. C., Harding, W. R., Archibald, C. G. M. 2007: A methods manual for the collection, preparation and analysis of diatom samples. Version 1. Report to the Water Research Commission. WRC Report TT 281/07. -South Africa.
- Van Dam, H., Mertens, A. & Sinkeldam, J. 1994: A coded checklist and ecological indicator values of freshwater diatoms and ecological indicator values of freshwater diatoms from Netherlands . -Neth. J. Aquat. Ecol. 28: 117-133.

- Vanormelingen, P., Verleyen, E. & Vyverman, W. 2008: The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. -Biodivers. Conserv. 17: 393-405.
- Vanormelingen P., Verleyen E. & Vyverman W. 2007: The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. In: Foissner W., Hawksworth D. L. (eds) Protist Diversity and Geographical Distribution. Topics in Biodiversity and Conservation, vol 8. -Springer, Dordrecht.
- Venkatachalapathy, R. & Karthikeyan, P. 2015: Diatom Indices and Water Quality Index of the Cauvery River, India: Implications on the Suitability of Bio-Indicators for Environmental Impact Assessment. (Environmental Management of River Basin Ecosystems). Springer Earth System Sciences. 707-727
- Wasylik, K. 1975: Notes on the freshwater algae of Iran. -Fragm. Florist. Geobot. 21 (3): 369-396.
- Witkowski, A., Wasylikowa, k., Lange-Bertaloth, H. & BAK, M. 2007: Diatom paleolimnology of Lake Zeribar, Iran, in the late Pleistocene and Holocene. In: The palaeoe cology of Lake Zeribar and surrounding areas western Iran, during the last 48000 years. (Ed. by K. WASYLIKOWA and A.

WITKOWSKI) Diatom Monographs. Vol. 8. -ARG Gantner Verlag K. G, Ruggell. 187-235 pp.

- Yusefi-Yeganeh, B., Feiznia, S. & Abbassi, N. 2011: Sedimentary Facies, Architectual Elements and Trace Fossils of Kashkan Formation, Folded Zagros Zone in AW Iran. -J. Sci. Islam. Repub. Iran. 22 (3): 239-255.
- Zhang, Y., Tao, J., Wang, J., Ding, L., Ding, C., Li, Y., Zhou, Q., Li, D. & Zhang, H. 2019: Trends in Diatom Research Since 1991 Based on Topic Modeling. -Microorganism. 7 (8): 1-13.
- Zarei-Darki, B. 2011a: Species composition and ecology of the diatoms in the Gavkkhuni Wetland (Iran). -Bulletin of Kharkiv National Agricultural University. Biology Series: . 1 (22): 110-117.
- Zarei-Darki, B. 2011b: Algae of aquatic ecosystems of Iran. -Payame-Alavi. Negar Isfahan. 323 pp. (in Persian).
- Zarei-Darki, B. 2009a: Algal flora of rivers in Iran. -Int. J. Algae. 11 (3): 310-320.
- Zarei-Darki, B. 2009b: Marine Species in the Algal Flora of the Anzali Swamp (Iran). -Russ. J. Mar. Biol. 35 (3): 200-205.
- Ziaie, H. 1996: A field Guide to the mammals of Iran. -Department of Environment, Tehran. 299pp. (in Persian).